Menu

Blog

Archive for the ‘neuroscience’ category: Page 212

Oct 14, 2023

What makes us human? Detailed cellular maps of the entire human brain reveal clues

Posted by in categories: health, mapping, neuroscience

In a suite of 21 papers published in the journals Science (12), Science Advances , and Science Translational Medicine , a large consortium of researchers shares new knowledge about the cells that make up our brains and the brains of other primates. It’s a huge leap from previously published work, with studies and data that reveal new insights about our nervous systems’ cellular makeup across many regions of the brain and what is distinctive about the human brain.

The research consortium is a concerted effort to understand the and its modular, functional nature. It was brought together by the National Institutes of Health’s Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative.

Hundreds of scientists from around the world worked together to complete a range of studies exploring the cellular makeup of the human and those of other primates, and to demonstrate how a transformative new suite of scalable techniques can be used to study the detailed organization of the human brain at unprecedented resolution.

Oct 14, 2023

Elon Musk wants more bandwidth between people and machines. Do we need it?

Posted by in categories: computing, Elon Musk, neuroscience

Speeding up communication between humans is surprisingly tricky.

Last week, a post by Elon Musk on X (formerly known as Twitter) caught my eye. The entrepreneur claimed that sticking electrodes in people’s heads is going to lead to a huge increase in the rate of data transfer out of, and into, human brains.

The occasion of Musk’s post was the announcement by Neuralink, his brain-computer interface (BCI) company, that it was officially seeking the first volunteer to receive the “N1,” an implant comprising 1,024 electrodes able to listen in on brain neurons.

Oct 14, 2023

Newly Discovered Spirals of Brain Activity May Help Explain Cognition

Posted by in categories: climatology, neuroscience

That’s one idea for how the brain organizes itself to support our thoughts, feelings, and emotions. But if the brain’s information processing dynamics are like waves, what happens when there’s turbulence?

In fact, the brain does experience the equivalent of neural “hurricanes.” They bump into one another, and when they do, the resulting computations correlate with cognition.

These findings come from a unique study in Nature Human Behavior that bridges neuroscience and fluid dynamics to unpack the inner workings of the human mind.

Oct 14, 2023

First magnetoelectric material solves nerve signal problems

Posted by in categories: biotech/medical, neuroscience

A study finds a material that is 120 times faster than similar ones, demonstrating its precision in remotely stimulating neurons and repairing severed sciatic nerves in rats.

A new study is paving the way for alternative approaches to treating brain and nerve problems gently without the need for major surgery by introducing a magnetoelectric material.

Despite challenges such as nerve cells not responding well to the signals made by these materials, Researchers wanted to find a way to make these signals easier for our nerves to understand.

Oct 14, 2023

Collaborative work creates detailed cellular map of the brain

Posted by in categories: biotech/medical, neuroscience

The vast set of information has been detailed in a series of 21 papers.

The majority of our actions are initiated by the brain, which plays a pivotal role in processing sensory information, making decisions, coordinating movements, and regulating bodily functions.

Overall, the human brain is an incredibly complex organ. It contains over 86 billion neurons – perhaps around the number of stars in the Milky Way galaxy.

Oct 14, 2023

Raising awareness of spina bifida

Posted by in categories: biotech/medical, neuroscience

Spina bifida is the most common birth defect of the central nervous system and the second most common of all structural birth defects. To learn more about it, From the Labs sat with Dr. Richard H. Finnell, whose lab at Baylor College of Medicine focuses on discovering the role of folic acid in the prevention of birth defects and in identifying the genes that determine susceptibility to human neural tube defects such as spina bifida.

FTL: What is spina bifida?

RHF: Spina bifida is a condition that occurs during very early development affecting the neural tube, which will give rise to the spinal cord and brain. It can be diagnosed during pregnancy or after the baby is born. Typically, the neural tube closes by the 28th day after conception. In babies with spina bifida, a portion of the neural tube doesn’t close properly, resulting in a malformed spinal cord and problems in the bones of the spine. The neural tube exposed to amniotic fluid results in bladder and bowel dysfunction and in orthopedic problems that limit the child’s ability to walk.

Oct 14, 2023

Abstraction of Reward Context Facilitates Relative Reward Coding in Neural Populations of the Macaque Anterior Cingulate Cortex

Posted by in categories: biological, finance, mapping, neuroscience

The anterior cingulate cortex (ACC) is believed to be involved in many cognitive processes, including linking goals to actions and tracking decision-relevant contextual information. ACC neurons robustly encode expected outcomes, but how this relates to putative functions of ACC remains unknown. Here, we approach this question from the perspective of population codes by analyzing neural spiking data in the ventral and dorsal banks of the ACC in two male monkeys trained to perform a stimulus-motor mapping task to earn rewards or avoid losses. We found that neural populations favor a low dimensional representational geometry that emphasizes the valence of potential outcomes while also facilitating the independent, abstract representation of multiple task-relevant variables. Valence encoding persisted throughout the trial, and realized outcomes were primarily encoded in a relative sense, such that cue valence acted as a context for outcome encoding. This suggests that the population coding we observe could be a mechanism that allows feedback to be interpreted in a context-dependent manner. Together, our results point to a prominent role for ACC in context setting and relative interpretation of outcomes, facilitated by abstract, or untangled, representations of task variables.

SIGNIFICANCE STATEMENT The ability to interpret events in light of the current context is a critical facet of higher-order cognition. The ACC is suggested to be important for tracking contextual information, whereas alternate views hold that its function is more related to the motor system and linking goals to appropriate actions. We evaluated these possibilities by analyzing geometric properties of neural population activity in monkey ACC when contexts were determined by the valence of potential outcomes and found that this information was represented as a dominant, abstract concept. Ensuing outcomes were then coded relative to these contexts, suggesting an important role for these representations in context-dependent evaluation. Such mechanisms may be critical for the abstract reasoning and generalization characteristic of biological intelligence.

Oct 14, 2023

Actually, neuroscience suggests “the self” is real

Posted by in category: neuroscience

However, underlying this scientific skepticism was also an ideological shift. Reductionism can be thought of as the antithesis or critique of the concepts of a premodern worldview. The rejection of the self was motivated by a hidden agenda to rid science of any ideas that remotely felt supernatural or religious. Since the self seemed intertwined with the idea of a soul, scientific pushback on ideological grounds was inevitable, and from that point on, findings from neuroscience and psychology were interpreted through a reductionist lens. The fact that scientists could not identify a localized region that precisely corresponded to the self seemed to verify the belief that it is an “illusion,” though to most people that statement has little meaning, if any.

This reductionist ideology recently found an ally in what is called “nondual” Eastern philosophy. According to this quasi-mystical doctrine, embracing the idea that we aren’t our thoughts or ego can lead to a more compassionate world — one free of self-blame and blame toward others. If none of us are in control of our actions or thoughts, then punishment is pointless and immoral. By not placing undue importance on the self, individuals might find themselves more attuned to the interconnected nature of existence, shifting toward a holistic worldview where “we’re all in this together.”

However, there’s a dark side to this denial of the self, and it’s extremely troubling to those who think about this stuff deeply. If we have no self and no control over our thoughts and actions, then we are slaves to a billiard ball universe, trapped in a nihilistic nightmare in which we cannot change our fate or the fate of humanity. For those who take the hardline reductionist stance seriously, this can lead to cognitive dissonance, and in rarer cases, crippling depression or psychosis.

Oct 13, 2023

This is the largest map of the human brain ever made

Posted by in categories: biotech/medical, neuroscience

Researchers catalogue more than 3,000 different types of cell in our most complex organ.

Oct 13, 2023

Brain Signals Linked to Better Memory Identified

Posted by in categories: biotech/medical, neuroscience

While it is well known that certain brain regions play a crucial role in memory processes, so far it has not been clear whether these regions exhibit different activities when it comes to storing information in people with better or worse memory performance.

Having investigated this matter, a research team led by Professor Dominique de Quervain and Professor Andreas Papassotiropoulos has now published its results in the journal Nature Communications.

In the world’s largest functional imaging study on memory, they asked nearly 1,500 participants between the ages of 18 and 35 to look at and memorize a total of 72 images. During this process, the researchers recorded the subjects’ brain activity using MRI. The participants were then asked to recall as many of the images as possible – and as in the general population, there were considerable differences in memory performance among them.

Page 212 of 1,014First209210211212213214215216Last