Menu

Blog

Archive for the ‘neuroscience’ category: Page 222

Sep 29, 2023

AI models are powerful, but are they biologically plausible?

Posted by in categories: biological, neuroscience, robotics/AI

About six years ago, scientists discovered a new type of more powerful neural network model known as a transformer. These models can achieve unprecedented performance, such as by generating text from prompts with near-human-like accuracy. A transformer underlies AI systems such as ChatGPT and Bard, for example. While incredibly effective, transformers are also mysterious: Unlike with other -inspired neural network models, it hasn’t been clear how to build them using biological components.

Now, researchers from MIT, the MIT-IBM Watson AI Lab, and Harvard Medical School have produced a hypothesis that may explain how a transformer could be built using biological elements in the brain. They suggest that a biological network composed of neurons and other called astrocytes could perform the same core computation as a transformer.

Sep 29, 2023

Quantum Material Exhibits “Non-Local” Behavior That Mimics Brain Function

Posted by in categories: computing, information science, mathematics, neuroscience, quantum physics

We often believe computers are more efficient than humans. After all, computers can complete a complex math equation in a moment and can also recall the name of that one actor we keep forgetting. However, human brains can process complicated layers of information quickly, accurately, and with almost no energy input: recognizing a face after only seeing it once or instantly knowing the difference between a mountain and the ocean. These simple human tasks require enormous processing and energy input from computers, and even then, with varying degrees of accuracy.

Creating brain-like computers with minimal energy requirements would revolutionize nearly every aspect of modern life. Funded by the Department of Energy, Quantum Materials for Energy Efficient Neuromorphic Computing (Q-MEEN-C) — a nationwide consortium led by the University of California San Diego — has been at the forefront of this research.

UC San Diego Assistant Professor of Physics Alex Frañó is co-director of Q-MEEN-C and thinks of the center’s work in phases. In the first phase, he worked closely with President Emeritus of University of California and Professor of Physics Robert Dynes, as well as Rutgers Professor of Engineering Shriram Ramanathan. Together, their teams were successful in finding ways to create or mimic the properties of a single brain element (such as a neuron or synapse) in a quantum material.

Sep 29, 2023

Older mouse brains rejuvenated by protein found in young blood

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

A protein involved in wound healing can improve learning and memory in ageing mice1.

Platelet factor 4 (PF4) has long been known for its role in promoting blood clotting and sealing broken blood vessels. Now, researchers are wondering whether this signalling molecule could be used to treat age-related cognitive disorders such as Alzheimer’s disease.

“The therapeutic possibilities are very exciting,” says geneticist and anti-ageing scientist David Sinclair at Harvard University in Boston, Massachusetts, who was not involved in the research. The study was published on 16 August in Nature.

Continue reading “Older mouse brains rejuvenated by protein found in young blood” »

Sep 29, 2023

New findings show how the brain prepares to make choices during decision-making

Posted by in categories: biotech/medical, neuroscience

Free will?

Neuroscientists and psychologists have been trying for decades to better understand how humans make decisions, in the hope to devise more effective interventions to promote healthy and beneficial lifestyle choices. Two brain regions that have been linked to decision-making are the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC).

Researchers at University of California, Berkeley (UC Berkeley), have been conducting extensive research focusing on these two areas of the brain and exploring their involvement in . In a recent paper published in Nature Neuroscience, they presented interesting new findings that could shed light on the through which the brain prepares to make choices.

Continue reading “New findings show how the brain prepares to make choices during decision-making” »

Sep 29, 2023

Circumcision Permanently Alters the Brain

Posted by in category: neuroscience

The data indicated that circumcision affected most intensely the portions of the victim’s brain associated with reasoning, perception and emotions.

Sep 29, 2023

A new breakthrough in obesity research allows you to lose fat while eating all you want

Posted by in categories: biotech/medical, food, genetics, neuroscience

This is a significant development that brings hope to the one billion individuals with obesity worldwide. Researchers led by Director C. Justin LEE from the Center for Cognition and Sociality (CCS) within the Institute for Basic Science (IBS) have discovered new insights into the regulation of fat metabolism. The focus of their study lies within the star-shaped non-neuronal cells in the brain, known as ‘astrocytes’. Furthermore, the group announced successful animal experiments using the newly developed drug ‘KDS2010’, which allowed the mice to successfully achieve weight loss without resorting to dietary restrictions.

The complex balance between food intake and energy expenditure is overseen by the hypothalamus in the brain. While it has been known that the neurons in the lateral hypothalamus are connected to fat tissue and are involved in fat metabolism, their exact role in fat metabolism regulation has remained a mystery. The researchers discovered a cluster of neurons in the hypothalamus that specifically express the receptor for the inhibitory neurotransmitter ‘GABA (Gamma-Aminobutyric Acid)’. This cluster has been found to be associated with the α5 subunit of the GABAA receptor and was hence named the GABRA5 cluster.

In a diet-induced obese mouse model, the researchers observed significant slowing in the pacemaker firing of the GABRA5 neurons. Researchers continued with the study by attempting to inhibit the activity of these GABRA5 neurons using chemogenetic methods. This in turn caused a reduction in heat production (energy consumption) in the brown fat tissue, leading to fat accumulation and weight gain. On the other hand, when the GABRA5 neurons in the hypothalamus were activated, the mice were able to achieve a successful weight reduction. This suggests that the GABRA5 neurons may act as a switch for weight regulation.

Sep 29, 2023

Brain cells living on the edge

Posted by in category: neuroscience

A paper published in Nature Communications shows that when neurons are given information about the changing world around them (task-related sensory input) it changes how they behave, putting them on edge so that tiny inputs can then set off ‘avalanches’ of brain activity, supporting a theory known as the critical brain hypothesis.

The researchers, from Cortical Labs and The University of Melbourne, used DishBrain – a collection of 800,000 human neural cells learning to play Pong.

It is the strongest evidence to date in support of a controversial theory of how the human brain processes information.

Continue reading “Brain cells living on the edge” »

Sep 29, 2023

Chronic traumatic encephalopathy in young athletes

Posted by in categories: biotech/medical, health, neuroscience

In a study of brains from contact sport players who died before reaching 30, more than 40% had chronic traumatic encephalopathy, oXavier?

The findings confirm that CTE can occur even in young people, but more work is needed to determine how CTE relates to clinical symptoms.

Millions of people worldwide get repetitive head impacts through various activities. These can lead to chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disease that causes brain damage similar to that seen in Alzheimer’s disease. CTE has been reported in people as young as 17. The incidence of CTE in young people, however, is unknown.

Continue reading “Chronic traumatic encephalopathy in young athletes” »

Sep 29, 2023

Evolution wired human brains to act like supercomputers

Posted by in categories: evolution, mathematics, neuroscience, supercomputing

Now, scientists have a mathematical model that closely matches how the human brain processes visual information.

Scientists have confirmed that human brains are naturally wired to perform advanced calculations, much like a high-powered computer, to make sense of the world through a process known as Bayesian inference.

In a study published in the journal Nature Communications, researchers from the University of Sydney, University of Queensland and University of Cambridge developed a specific mathematical model that closely matches how human brains work when it comes to reading vision. The model contained everything needed to carry out Bayesian inference.

Sep 29, 2023

Fundamental process behind memory now captured live

Posted by in category: neuroscience

Researchers from the Netherlands Institute for Neuroscience have, for the first time, witnessed nerve plasticity in the axon in motion.

Our nerve cells communicate through rapid transmission of electrical signals known as action potentials. All action potentials in the brain start in one unique small area of the cell: the axon initial segment (AIS). This is the very first part of the axon, the long, thin extension of a nerve cell that transmits signals or impulses from one nerve cell to another. It acts as a control center where it is decided when an action potential is initiated before traveling further along the axon.

Previously, researchers made the surprising observation that plasticity also occurs at the AIS. Plasticity refers to the brain’s ability to create new connections and structures in order to scale the amount of electrical activity, which is crucial for learning and memory. AIS plasticity occurs during changes in brain network activity. The segment’s length can become shorter with excessive activity or longer with low activity. But how does this structure change, and how quickly does it happen? Amélie Fréal and Nora Jamann in the lab of Maarten Kole have, for the first time, observed in real-time how this adaptability functions within the axon and identified the molecular mechanisms behind this process.

Page 222 of 1,014First219220221222223224225226Last