Toggle light / dark theme

Although the heart has its own nervous system, its organization and functionality remain largely unknown. Here, the authors reveal the molecular, chemical, and functional diversity of neurons within the intracardiac nervous system and their role in controlling the heart’s rhythm in the zebrafish.

Scientists Just Merged Human Brain Cells With AI – Here’s What Happened!
What happens when human brain cells merge with artificial intelligence? Scientists have just achieved something straight out of science fiction—combining living neurons with AI to create a hybrid intelligence system. The results are mind-blowing, and they could redefine the future of computing. But how does it work, and what does this mean for humanity?

In a groundbreaking experiment, researchers successfully integrated human brain cells with AI, creating a system that learns faster and more efficiently than traditional silicon-based computers. These “biocomputers” use lab-grown brain organoids to process information, mimicking human thought patterns while leveraging AI’s speed and scalability. The implications? Smarter, more adaptive machines that think like us.

Why is this such a big deal? Unlike conventional AI, which relies on brute-force data crunching, this hybrid system operates more like a biological brain—learning with less energy, recognizing patterns intuitively, and even showing early signs of creativity. Potential applications include ultra-fast medical diagnostics, self-improving robots, and brain-controlled prosthetics that feel truly natural.

But with great power comes big questions. Could this lead to conscious machines? Will AI eventually surpass human intelligence? And what are the ethical risks of blending biology with technology? This video breaks down the science, the possibilities, and the controversies—watch to the end for the full story.

How did scientists merge brain cells with AI? What are biocomputers? Can AI become human-like? What is hybrid intelligence? Will AI replace human brains?This video will answer all these question. Make sure you watch all the way though to not miss anything.

#ai.

As you age you naturally lose neurons and muscle mass and experience a decline in fertility and wound healing ability. Previous research in animals has offered several potential techniques for turning back the biological clock in specific tissues, including exercise and calorie restriction. However, age reversal of blood cells or at whole organism level has so far been elusive.

Let me begin by telling the story of how this impacted my own life.

It was subtle at first, the little moments I began to miss.

The chirping of birds, the gentle hum of the refrigerator, even the soft whispers shared between my grandchildren, all started to fade.

To explore how the brain deciphers the melody of speech, researchers worked with the rare group of patients who had electrodes implanted in their brains as part of epilepsy treatment. While these patients actively listened to an audiobook recording of “Alice in Wonderland,” scientists tracked activity in multiple brain regions in real time.

Using the intracerebral recordings from the electrodes deep in the patient’s brain, researchers noted the Heschl’s gyrus section processed subtle changes in voice pitch — not just as sound, but as meaningful linguistic units. The brain encoded pitch accents separately from the sounds that make up words.

The author says the research also revealed that the hidden layer of meaning carried by prosodic contours — the rise and fall of speech — is encoded much earlier in auditory processing than previously thought.

Similar research was conducted in non-human primates, but researchers found those brains lacked this abstraction, despite processing the same acoustic cues.

By unlocking the hidden layer of speech, the team discovered how the brain processes pitch accents, revealing profound implications for various fields.

“Our findings could transform speech rehabilitation, AI-powered voice assistants, and our understanding of what makes human communication unique,” the author said.


A major study links long-term air pollution, especially sulfur dioxide, to higher depression risk, urging stronger pollution controls to protect mental health. A landmark study published in Environmental Science and Ecotechnology has found a strong link between long-term exposure to air pollution