Apr 20, 2023
Comb jellies’ unique fused neurons challenge evolution ideas
Posted by Dan Breeden in categories: evolution, neuroscience
Fused neurons suggest ctenophores’ nervous system evolved independently of that in other animals.
Fused neurons suggest ctenophores’ nervous system evolved independently of that in other animals.
The myth that humans only use 10 per cent of their brains is exactly that — a myth.
It’s a mistruth that’s been misattributed to the likes of Albert Einstein over the years. In reality, humans actually use a lot of their brain pretty much all the time, but our understanding of exactly how they actually work is changing all the time.
Organoids aren’t nearly as complex as their full-sized counterparts, but they’re useful for research — scientists can study organ development, monitor disease progression, and even test new treatments on them.
What’s new: When human embryos are about five weeks old, they develop structures called “optic cups” that will eventually become retinas.
Researchers have grown optic cups in the lab before, and they’ve also grown mini brains. Now, researchers at University Hospital Düsseldorf have grown brain organoids with optic cups.
In this episode, my guest is Oded Rechavi, Ph.D., professor of neurobiology at Tel Aviv University and expert in how genes are inherited, how experiences shape genes and remarkably, how some memories of experiences can be passed via genes to offspring. We discuss his research challenging long-held tenets of genetic inheritance and the relevance of those findings to understanding key biological and psychological processes including metabolism, stress and trauma. He describes the history of the scientific exploration of the “heritability of acquired traits” and how epigenetics and RNA biology can account for some of the passage of certain experience-based memories. He discusses the importance of model organisms in scientific research and describes his work on how stressors and memories can be passed through small RNA molecules to multiple generations of offspring in ways that meaningfully affect their behavior. Nature vs. nurture is a commonly debated theme; Dr. Rechavi’s work represents a fundamental shift in our understanding of that debate, as well as genetic inheritance, brain function and evolution.
Thank you to our sponsors.
AG1 (Athletic Greens): https://athleticgreens.com/huberman.
ROKA: https://roka.com/huberman.
HVMN: https://hvmn.com/huberman.
Eight Sleep: https://eightsleep.com/huberman.
InsideTracker: https://www.insidetracker.com/huberman.
Summary: Brain areas that control movement are plugged into networks that orchestrate thinking and planning, and control involuntary bodily functions. The findings provide a link between the body and the “mind” in the brain’s structure.
Source: WUSTL
Calm body, calm mind, say the practitioners of mindfulness. A new study by researchers at Washington University School of Medicine in St. Louis indicates that the idea that the body and mind are inextricably intertwined is more than just an abstraction.
Findings point to brain areas that integrate planning, purpose, physiology, behavior, and movement.
Calm body, calm mind, say the practitioners of mindfulness. A new study by researchers at Washington University School of Medicine in St. Louis indicates that the idea that the body and mind are inextricably intertwined is more than just an abstraction. The study shows that parts of the brain area that control movement are plugged into networks involved in thinking and planning, and in control of involuntary bodily functions such as blood pressure and heartbeat. The findings represent a literal linkage of body and mind in the very structure of the brain.
The research, published on April 19 in the journal Nature, could help explain some baffling phenomena, such as why anxiety makes some people want to pace back and forth; why stimulating the vagus nerve, which regulates internal organ functions such as digestion and heart rate, may alleviate depression; and why people who exercise regularly report a more positive outlook on life.
Ed Boyden shows how, by inserting genes for light-sensitive proteins into brain cells, he can selectively activate or de-activate specific neurons with fiber-optic implants. With this unprecedented level of control, he’s managed to cure mice of analogs of PTSD and certain forms of blindness. On the horizon: neural prosthetics. Session host Juan Enriquez leads a brief post-talk Q&A.
Scientists have recently identified a unique form of cell messaging occurring in the human brain that’s not been seen before.
Excitingly, the discovery hints that our brains might be even more powerful units of computation than we realized.
Back in 2020, researchers from institutes in Germany and Greece reported a mechanism in the brain’s outer cortical cells that produces a novel ‘graded’ signal all on its own, one that could provide individual neurons with another way to carry out their logical functions.
In all bilaterally symmetrical animals, from humans down to simple worms, nerves cross from one side of the body to the opposite side of the brain. Geometry may explain why.
In this episode, my guest is Matthew MacDougall, MD, the head neurosurgeon at Neuralink. Dr. MacDougall trained at the University of California, San Diego and Stanford University School of Medicine and is a world expert in brain stimulation, repair and augmentation. He explains Neuralink’s mission and projects to develop and use neural implant technologies and robotics to 1) restore normal movement to paralyzed patients and those with neurodegeneration-based movement disorders (e.g., Parkinson’s, Huntington’s Disease) and to repair malfunctions of deep brain circuitry (e.g., those involved in addiction). He also discusses Neuralink’s efforts to create novel brain-machine interfaces (BMI) that enhance human learning, cognition and communication as a means to accelerate human progress. Dr. MacDougall also explains other uses of bio-integrated machines in daily life; for instance, he implanted himself with a radio chip into his hand that allows him to open specific doors, collect and store data and communicate with machines and other objects in unique ways. Listeners will learn about brain health and function through the lens of neurosurgery, neurotechnology, clinical medicine and Neuralink’s bold and unique mission. Anyone interested in how the brain works and can be made to work better ought to derive value from this discussion.
#HubermanLab #Neuroscience.