Menu

Blog

Archive for the ‘neuroscience’ category: Page 319

Apr 30, 2023

Brain Drain: Measuring the Energy Consumption of Our Thinking Minds

Posted by in category: neuroscience

Summary: Our brain consumes a significant amount of energy, accounting for about 20% of the body’s total energy consumption. Most of this energy is used for information processing.

While research shows that increased mental activity does lead to slightly higher energy consumption, this increase is minimal, region-specific, and often offset by energy decreases in other areas.

Feeling exhausted after mental activity is likely due to mental stress rather than actual energy depletion. Pacing yourself can help avoid mental overload, stress, and fatigue.

Apr 30, 2023

Information ‘deleted’ from the human genome may be what made us human

Posted by in categories: biotech/medical, genetics, neuroscience

What the human genome is lacking compared with the genomes of other primates might have been as crucial to the development of humankind as what has been added during our evolutionary history, according to a new study led by researchers at Yale and the Broad Institute of MIT and Harvard.

The new findings, published April 28 in the journal Science, fill an important gap in what is known about historical changes to the human genome. While a revolution in the capacity to collect data from genomes of different species has allowed scientists to identify additions that are specific to the human —such as a gene that was critical for humans to develop the ability to speak—less attention has been paid to what’s missing in the .

For the new study researchers used an even deeper genomic dive into primate DNA to show that the loss of about 10,000 bits of genetic information—most as small as a few base pairs of DNA—over the course of our differentiate humans from chimpanzees, our closest primate relative. Some of those “deleted” pieces of genetic information are closely related to genes involved in neuronal and cognitive functions, including one associated with the formation of cells in the developing brain.

Apr 30, 2023

Caltech’s Enzyme Discovery Enables New Mechanism for Crossing the Blood–Brain Barrier

Posted by in categories: biotech/medical, neuroscience

Caltech researchers discovered an enzyme that enables viral vectors to cross the blood-brain barrier, potentially aiding brain disorder drug development and research.

The blood–brain barrier (BBB) is a stringent, nearly impenetrable layer of cells that guards the brain, protecting the vital organ from hazards in the bloodstream such as toxins or bacteria and allowing only a very limited set of small molecules, such as nutrients, to pass through. This layer of protection, however, makes it difficult for researchers to study the brain and to design drugs that can treat brain disorders.

Now, a new study from Caltech has identified a previously unknown mechanism by which certain viral vectors—protein shells engineered to carry various desired cargo—can cross through the BBB. This mechanistic insight may provide a new approach to designing viral vectors for research and therapeutic applications. Understanding this and other new mechanisms could also give insight into how the brain’s defenses may be exploited by emergent pathogens, enabling researchers to prepare methods to block them.

Apr 29, 2023

Researchers find rhythmic brain activity helps to maintain temporary memories

Posted by in category: neuroscience

New research shows that rhythmic brain activity is key to temporarily maintaining important information in memory. Researchers at the Del Monte Institute for Neuroscience at the University of Rochester published these findings today in Current Biology that found brain rhythms—or patterns of neuronal activity—organize the bursts of activity in the brain that maintain short-term connections.

“The thought has been that the temporary storage of important information is linked to neurons in the brain that just fire away, retaining that information until it is no longer needed. Recent research has shown that it might not be such persistent that matters most for the temporary storage of information, but rather a short-term strengthening of the connections between neurons that are representing the information. Our research shows that are organizing these transient bursts over time,” said Ian Fiebelkorn, Ph.D., assistant professor of Neuroscience and senior author of the study.

“The rhythmic coordination of brain activity over time is important because it allows overlapping populations of neurons to store different pieces of information at the same time.”

Apr 29, 2023

Is Memory a Virus? How Retroviruses Shaped the Human Mind

Posted by in categories: biotech/medical, neuroscience

All land animals have an Arc gene in their brain. This gene serves as the “master regulator” that determines how neuronal synapses (i.e., neuronal connections) form in the brain.

Two independent research groups [1, 2] have published their findings in the prestigious academic journal, Cell, in 2018 — showing that Arc behaves like viruses and has ancestral roots in retroviruses.

In a sense, the Arc gene moulds and sculpts the brain connections — forming the mind — making amphibians think like amphibians, birds like birds, reptiles like reptiles, monkeys like monkeys, and humans like humans.

Apr 29, 2023

Audio long read: Conquering Alzheimer’s — a look at the therapies of the future

Posted by in categories: biotech/medical, neuroscience

Listen to an audio version of a recent Nature feature.

Apr 29, 2023

Elderly people can improve episodic memory via neurostimulation of the cerebellum, shows study

Posted by in categories: biotech/medical, life extension, neuroscience

A recent study demonstrated that non-invasive stimulation of the right cerebellum led to improvements in episodic memory performance in healthy elderly individuals, at the end of a 12-day neurostimulation program, and also at the point of a 4-month follow-up.

The steady increase in average life expectancy poses significant challenges to individuals, families, and societies across multiple dimensions. Estimating that by 2050 one in every six individuals will be over the age of 65, the study of aging and its association with , and overall frailty is becoming increasingly important.

Therefore, it has been an important goals of neurosciences research to understand the relationship between the and deficits and to develop interventions to mitigate the in our ability to remember personal past events (episodic memory).

Apr 29, 2023

The Neuroscience of Real Life Monsters: Psychopaths, CEOs, & Politicians (Science on Tap Livestream)

Posted by in categories: biological, ethics, genetics, neuroscience, science

Why do some people live lawful lives, while others gravitate toward repeated criminal behavior? Do people choose to be moral or immoral, or is morality simply a genetically inherited function of the brain? Research suggests that psychopathy as a biological condition explained by defective neural circuits that mediate empathy, but what does that mean when neuroscience is used as evidence in criminal court? How can understanding neuroscience give us an insight into the actions and behaviors of our political leaders?

Forensic psychiatrist Dr. Octavio Choi https://med.stanford.edu/profiles/ochoi will explore how emerging neuroscience challenges long-held assumptions underlying the basis—and punishment—of criminal behavior.

Continue reading “The Neuroscience of Real Life Monsters: Psychopaths, CEOs, & Politicians (Science on Tap Livestream)” »

Apr 29, 2023

Children and Adults Process Social Interactions Differently: Study Reveals Key Differences in Brain Activation

Posted by in category: neuroscience

Lead author Jon Walbrin explains, “Most previous social neuroscience studies have focused on measuring responses to other people as individuals. But more recently there has been an increased interest in understanding brain responses to others in the context of social interactions. However, very little is currently known about how such responses develop during childhood.”

“These results suggest that children and adults might employ different strategies for interaction understanding: Adults rely more on observable, body-based information, while children—with less social experience—engage more in effortful reasoning about what others are thinking and feeling during an interaction. This likely reflects the process of learning to understand interactive behavior.”

Apr 29, 2023

Structured exploration allows biological brains to learn faster than AI, suggests study

Posted by in categories: biological, neuroscience, robotics/AI

Neuroscientists have uncovered how exploratory actions enable animals to learn their spatial environment more efficiently. Their findings could help build better AI agents that can learn faster and require less experience.

Researchers at the Sainsbury Wellcome Center and Gatsby Computational Neuroscience Unit at UCL found the instinctual exploratory runs that animals carry out are not random. These purposeful actions allow mice to learn a map of the world efficiently. The study, published today, April 28, in Neuron, describes how neuroscientists tested their hypothesis that the specific exploratory actions that animals undertake, such as darting quickly towards objects, are important in helping them learn how to navigate their environment.

“There are a lot of theories in psychology about how performing certain actions facilitates learning. In this study, we tested whether simply observing obstacles in an environment was enough to learn about them, or if purposeful, sensory-guided actions help animals build a cognitive map of the world,” said Professor Tiago Branco, Group Leader at the Sainsbury Wellcome Center and corresponding author on the paper.

Page 319 of 1,037First316317318319320321322323Last