Menu

Blog

Archive for the ‘neuroscience’ category: Page 324

Mar 10, 2023

Enzyme ATE1 plays role in cellular stress response, opening door to new therapeutic targets

Posted by in categories: biotech/medical, health, neuroscience

A new paper in Nature Communications illuminates how a previously poorly understood enzyme works in the cell. Many diseases are tied to chronic cellular stress, and UMBC’s Aaron T. Smith and colleagues discovered that this enzyme plays an important role in the cellular stress response. Better understanding how this enzyme functions and is controlled could lead to the discovery of new therapeutic targets for these diseases.

The enzyme is named ATE1, and it belongs to a family of enzymes called arginyl-tRNA transferases. These enzymes add arginine (an amino acid) to proteins, which often flags the proteins for destruction in the cell. Destroying proteins that are misfolded, often as a result of cellular stress, is important to prevent those proteins from wreaking havoc with cellular function. An accumulation of malfunctioning proteins can cause serious problems in the body, leading to diseases like Alzheimer’s or cancer, so being able to get rid of these proteins efficiently is key to long-term health.

The new paper demonstrates that ATE1 binds to clusters of iron and sulfur ions, and that the enzyme’s activity increases two-to three-fold when it is bound to one of these iron-sulfur clusters. What’s more, when the researchers blocked cells’ ability to produce the clusters, ATE1 activity decreased dramatically. They also found that ATE1 is highly sensitive to oxygen, which they believe relates to its role in moderating the cell’s stress response through a process known as .

Mar 10, 2023

1st Complete Map of an Insect’s Brain Contains 3,016 Neurons

Posted by in categories: biotech/medical, neuroscience

Scientists created a map of an entire larval fruit fly brain that shows all 548,000 synapses in the organ.

Mar 10, 2023

The Future of Computing Includes Biology: AI Computers Powered by Human Brain Cells

Posted by in categories: biotech/medical, computing, neuroscience

The future of computing includes biology says an international team of scientists.

The time has come to create a new kind of computer, say researchers from John Hopkins University together with Dr. Brett Kagan, chief scientist at Cortical Labs in Melbourne, who recently led development of the DishBrain project, in which human cells in a petri dish learned to play Pong.

Continue reading “The Future of Computing Includes Biology: AI Computers Powered by Human Brain Cells” »

Mar 10, 2023

Atrial fibrillation linked to a 13% higher risk of dementia

Posted by in category: neuroscience

Individuals with newly-diagnosed atrial fibrillation (AFib), or an irregular heart rhythm, may have a modestly elevated risk of developing dementia, a new study indicates.

Mar 10, 2023

First Complete Wiring Map of Neurons in Insect Brain: 3016 Neurons and 548,000 Synapses Mapped

Posted by in categories: innovation, neuroscience

Summary: A newly constructed brain map shows every single neuron and how they are wired together in the brains of fruit fly larvae.

Source: UK Research and Innovation.

Researchers have built the first ever map showing every single neuron and how they’re wired together in the brain of the fruit fly larva.

Mar 10, 2023

First nasal monoclonal antibody treatment for COVID-19 shows promise for treating virus, other diseases

Posted by in categories: biotech/medical, health, neuroscience

A pilot trial by investigators from Brigham and Women’s Hospital, a founding member of the Mass General Brigham health care system, tested the nasal administration of the drug Foralumab, an anti-CD3 monoclonal antibody. Investigators found evidence that the drug dampened the inflammatory T cell response and decreased lung inflammation in patients with COVID-19. Further analysis showed the same gene expression modulation in patients with multiple sclerosis, who experienced decreased brain inflammation, suggesting that Foralumab could be used to treat other diseases. Their results are published in the Proceedings of the National Academy of Sciences.

“We discovered a way to shut down inflammation not only seen in COVID-19, but also in a patient with multiple sclerosis as well as in healthy patients,” said lead author Thais Moreira, Ph.D., an assistant scientist at the Ann Romney Center for Neurologic Diseases at BWH and an instructor in Neurology at Harvard Medical School. “This is very exciting because not only does our study suggest that this new monoclonal antibody drug is safe and can modulate the without major side effects, but it can also decrease inflammation in multiple realms, so it may be useful for treating other diseases.”

“Inflammation is a major cause of many diseases,” said senior author Howard Weiner, MD, founder and director of the Brigham Multiple Sclerosis Center and co-director of the Ann Romney Center for Neurologic Diseases. “Our center has spent decades looking for novel ways to treat disease where there is abnormal inflammation in a way that is safe and effective.”

Mar 9, 2023

Researchers create mutant mice to study bipolar disorder

Posted by in categories: bioengineering, biotech/medical, neuroscience

Bipolar disorder (BD) is a debilitating condition characterized by alternating states of depression (known as depressive episodes) and abnormal excitement or irritability (known as manic episodes). Large-scale genome-wide association studies (GWASs) have revealed that variations in the genes present on the fatty acid desaturase (FADS) locus are linked to an increased risk of BD.

Enzymes coded by FADS genes—FADS1 and FADS2—convert or “biosynthesize” omega-3 into the different forms required by the human body. Omega-3 fatty acids like (EPA) and (DHA) are crucial for the brain to function, and a reduction in the synthesizing activity of these molecules seems to increase susceptibility to bipolar mood swings.

Research on most diseases involves establishment of an animal model of the disease. So, keeping this knowledge in mind, a team of researchers including Dr. Takaoki Kasahara and Hirona Yamamoto from RIKEN Brain Science Institute and Dr. Tadafumi Kato from Juntendo University in Japan, used CRISPR-Cas9 gene editing to create that lack both Fads1 and Fads2 genes.

Mar 9, 2023

VALL-E X

Posted by in category: neuroscience

Ziqiang zhang*, long zhou*, chengyi wang, sanyuan chen, yu wu, shujie liu, zhuo chen, yanqing liu, huaming wang, jinyu li, lei he, sheng zhao, furu wei.

Microsoft

Abstract. We propose a cross-lingual neural codec language model, VALL-E X, for cross-lingual speech synthesis. Specifically, we extend VALL-E and train a multi-lingual conditional codec language model to predict the acoustic token sequences of the target language speech by using both the source language speech and the target language text as prompts. VALL-E X inherits strong in-context learning capabilities and can be applied for zero-shot cross-lingual text-to-speech synthesis and zero-shot speech-to-speech translation tasks. Experimental results show that it can generate high-quality speech in the target language via just one speech utterance in the source language as a prompt while preserving the unseen speaker’s voice, emotion, and acoustic environment. Moreover, VALL-E X effectively alleviates the foreign accent problems, which can be controlled by a language ID.

Mar 9, 2023

Perovskite nanocrystal computer components inspired by brain cells

Posted by in categories: computing, mathematics, neuroscience

Researchers at Empa, ETH Zurich and the Politecnico di Milano are developing a new type of computer component that is more powerful and easier to manufacture than its predecessors. Inspired by the human brain, it is designed to process large amounts of data fast and in an energy-efficient way.

In many respects, the is still superior to modern computers. Although most people can’t do math as fast as a , we can effortlessly process complex sensory information and learn from experiences, while a computer cannot—at least not yet. And, the brain does all this by consuming less than half as much energy as a laptop.

One of the reasons for the brain’s energy efficiency is its structure. The individual brain cells—the neurons and their connections, the synapses—can both store and process information. In computers, however, the memory is separate from the processor, and data must be transported back and forth between these two components. The speed of this transfer is limited, which can slow down the whole computer when working with large amounts of data.

Mar 9, 2023

Fresh Understanding of Aging in the Brain Offers Hope for Treating Neurological Diseases

Posted by in categories: biotech/medical, life extension, neuroscience

Summary: As the brain ages, microglia adopt dysfunctional states that increase the risk of developing neurodegenerative diseases such as Alzheimer’s disease.

Source: TCD

Scientists from the Trinity Biomedical Sciences Institute (TBSI) have shed new light on aging processes in the brain. By linking the increased presence of specialised immune cells to conditions such as Alzheimer’s disease and traumatic brain injury for the first time, they have unearthed a possible new target for therapies aimed at treating age-related neurological diseases.

Page 324 of 1,016First321322323324325326327328Last