Menu

Blog

Archive for the ‘particle physics’ category: Page 185

Apr 1, 2023

Great Mysteries of Physics 4: does objective reality exist?

Posted by in categories: cosmology, particle physics, quantum physics

That means that these two people will say that the state of reality is different – they’d have different facts about where the particle is.

There are may other oddities about quantum mechanics, too. Particles can be entangled in a way that enables them to somehow share information instantaneously even if they’re light years apart, for example. This challenges another common intution: that objects need a physical mediator to interact.

Physicists have therefore long debated how to interpret quantum mechanics. Is it a true and objective description of reality? If so, what happens to all the possible outcomes that we don’t measure? The many worlds interpretation argues they do happen – but in parallel universes.

Mar 30, 2023

Experiment finds gluon mass in the proton

Posted by in category: particle physics

Nuclear physicists may have finally pinpointed where in the proton a large fraction of its mass resides. A recent experiment carried out at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility has revealed the radius of the proton’s mass that is generated by the strong force as it glues together the proton’s building block quarks. The result was recently published in Nature.

One of the biggest mysteries of the proton is the origin of its mass. It turns out that the proton’s measured mass doesn’t just come from its physical building blocks, its three so-called valence quarks.

“If you add up the Standard Model masses of the quarks in a proton, you only get a small fraction of the proton’s mass,” explained experiment co-spokesperson Sylvester Joosten, an experimental physicist at DOE’s Argonne National Laboratory.

Mar 30, 2023

Journey to the center of a black hole: Scientists discover what lies beyond the event horizon

Posted by in categories: cosmology, particle physics

Scientists relied on the holographic principle, which suggests that the two existing theories – particles and gravity – are equivalent.

Mar 30, 2023

What if The Universe Started With a Dark Big Bang?

Posted by in categories: cosmology, particle physics, quantum physics

The Big Bang may have not been alone. The appearance of all the particles and radiation in the universe may have been joined by another Big Bang that flooded our universe with dark matter particles. And we may be able to detect it.

In the standard cosmological picture the early universe was a very exotic place. Perhaps the most momentous thing to happen in our cosmos was the event of inflation, which at very early times after the Big Bang sent our universe into a period of extremely rapid expansion.

Continue reading “What if The Universe Started With a Dark Big Bang?” »

Mar 30, 2023

Colloids get creative to pave the way for next generation photonics

Posted by in categories: computing, particle physics, solar power, sustainability

Scientists have devised a way of fabricating a complex structure, previously found only in nature, to open up new ways for manipulating and controlling light.

The structure, which naturally occurs in the wing scales of some species of butterfly, can function as a photonic crystal, according to a new study by researchers at the University of Birmingham. It can be used to control light in the visible range of the spectrum, for applications for lasers, sensors, and also devices for harvesting solar energy.

Their computational study, published in Advanced Materials, demonstrates that the complex gyroid structure can be self-assembled from designer in the range of hundreds of nanometers.

Mar 30, 2023

Quantum on a Microgram Scale

Posted by in categories: particle physics, quantum physics

An experiment with an acoustic resonator demonstrates the quantum superposition of atoms—nearly matching the ability of matter interferometers to test quantumness on macroscopic scales.

Mar 29, 2023

A robust quantum memory that stores information in a trapped-ion quantum network

Posted by in categories: computing, particle physics, quantum physics, space

Researchers at University of Oxford have recently created a quantum memory within a trapped-ion quantum network node. Their unique memory design, introduced in a paper in Physical Review Letters, has been found to be extremely robust, meaning that it could store information for long periods of time despite ongoing network activity.

“We are building a network of quantum computers, which use trapped ions to store and process quantum information,” Peter Drmota, one of the researchers who carried out the study, told Phys.org. “To connect quantum processing devices, we use emitted from a single atomic ion and utilize between this ion and the photons.”

Trapped ions, charged atomic particles that are confined in space using , are a commonly used platform for realizing quantum computations. Photons (i.e., the particles of light), on the other hand, are generally used to transmit quantum information between distant nodes. Drmota and his colleagues have been exploring the possibility of combining trapped ions with photons, to create more powerful quantum technologies.

Mar 29, 2023

Why black holes unlock the quantum majesty of the Universe

Posted by in categories: computing, cosmology, mathematics, particle physics, quantum physics

The story of modern physics has been one of reductionism. We do not need a vast encyclopedia to understand the inner workings of Nature. Rather, we can describe a near-limitless range of natural phenomena, from the interior of a proton to the creation of galaxies, with apparently unreasonable efficiency using the language of mathematics. In the words of theoretical physicist Eugene Wigner, ‘The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it.’

The mathematics of the twentieth century described a Universe populated by a limited number of different types of fundamental particles interacting with each other in an arena known as spacetime according to a collection of rules that can be written down on the back of an envelope. If the Universe was designed, it seemed, the designer was a mathematician.

Today, the study of black holes appears to be edging us in a new direction, towards a language more often used by quantum computer scientists. The language of information. Space and time may be emergent entities that do not exist in the deepest description of Nature. Instead, they are synthesized out of entangled quantum bits of information in a way that resembles a cleverly constructed computer code. If the Universe is designed, it seems, the designer is a programmer.

Mar 27, 2023

Scientists figured out how to manipulate ‘quantum light’ for the first time in history

Posted by in categories: particle physics, quantum physics

Manipulating anything in the world of quantum physics is tricky, but now, scientists have managed to manipulate quantum light particles that have a strong relationship with each other. The breakthrough sounds a bit obscure, especially if you aren’t studying quantum mechanics yourself, but it’s a huge success that will be fundamental in how scientists study the quantum realm from here forward.

Mar 27, 2023

Nonlinear evolution of the Weibel instability with relativistic laser pulses

Posted by in categories: evolution, particle physics

The Weibel instability is investigated using relativistic intense short laser pulses. A relativistic short laser pulse can generate a sub-relativistic high-density collisionless plasma. By irradiating double parallel planar targets with two relativistic laser pulses, sub-relativistic collisionless counterstreaming plasmas are created. Since the growth rate of the Weibel instability is proportional to the plasma density and velocity, the spatial and temporal scales of the Weibel instability can be much smaller than that from nanosecond large laser facilities. Recent theoretical and numerical studies have revealed that astrophysical collisionless shocks in sub-relativistic regimes in the absence and presence of an ambient magnetic field play essential roles in cosmic ray acceleration. With experimental verification in mind, we discuss the possible experimental models on the Weibel instability with intense short laser pulses. In order to show the experimental feasibility, we perform 2D particle-in-cell simulations in the absence of an external magnetic field as the first step and discuss the optimum conditions to realize the nonlinear evolutions of the Weibel instability in laboratories.