Menu

Blog

Archive for the ‘particle physics’ category: Page 199

Feb 14, 2023

Viral Budding of the SARS-CoV-2 virus — NanoBiology Course 2020 — Tuesday Group

Posted by in categories: biotech/medical, chemistry, particle physics

In this video students of the Maastricht Science Program NanoBiology Course 2020, show their explanation of the SARS-CoV-2 viral budding. Using CellPAINT, UCFS Chimera and their creativity they explain the nanobiology of how the SARS-CoV-2 virion can bud and leave the cell.

Viruses are not living things. They are just complicated assemblies of molecules, in particular macromolecules such as proteins, oligonucleotides, combined with lipids and carbohydrates. A virus cannot function or reproduce by itself. It needs a host cell.

Continue reading “Viral Budding of the SARS-CoV-2 virus — NanoBiology Course 2020 — Tuesday Group” »

Feb 14, 2023

New model of quark-gluon plasma solves a long-standing discrepancy between theory and data

Posted by in categories: cosmology, particle physics

Research in fundamental science has revealed the existence of quark-gluon plasma (QGP)—a newly identified state of matter—as the constituent of the early universe. Known to have existed a microsecond after the Big Bang, the QGP, essentially a soup of quarks and gluons, cooled down with time to form hadrons like protons and neutrons—the building blocks of all matter.

One way to reproduce the extreme conditions prevailing when QGP existed is through relativistic heavy-ion collisions. In this regard, particle accelerator facilities like the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider have furthered our understanding of QGP with experimental data pertaining to such collisions.

Meanwhile, have employed multistage relativistic hydrodynamic models to explain the data, since the QGP behaves very much like a perfect fluid. However, there has been a serious lingering disagreement between these models and data in the region of low transverse momentum, where both the conventional and hybrid models have failed to explain the particle yields observed in the experiments.

Feb 14, 2023

Theorizing the Basis of Our World: A Reading List on Quantum Reality

Posted by in categories: mobile phones, nuclear energy, particle physics, quantum physics

Quantum Mechanics is the science behind nuclear energy, smart phones, and particle collisions. Yet, almost a century after its discovery, there is still controversy over what the theory actually means. The problem is that its key element, the quantum-mechanical wave function describing atoms and subatomic particles, isn’t observable. As physics is an experimental science, physicists continue to argue over whether the wave function can be taken as real, or whether it is just a tool to make predictions about what can be measured—typically large, “classical” everyday objects.

The view of the antirealists, advocated by Niels Bohr, Werner Heisenberg, and an overwhelming majority of physicists, has become the orthodox mainstream interpretation. For Bohr especially, reality was like a movie shown without a film or projector creating it: “There is no quantum world,” Bohr reportedly affirmed, suggesting an imaginary border between the realms of microscopic, “unreal” quantum physics and “real,” macroscopic objects—a boundary that has received serious blows by experiments ever since. Albert Einstein was a fierce critic of this airy philosophy, although he didn’t come up with an alternative theory himself.

For many years only a small number of outcasts, including Erwin Schrödinger and Hugh Everett populated the camp of the realists. This renegade view, however, is getting increasingly popular—and of course triggers the question of what this quantum reality really is. This is a question that has occupied me for many years, until I arrived at the conclusion that quantum reality, deep down at the most fundamental level, is an all-encompassing, unified whole: “The One.”

Feb 14, 2023

Extremely Dense Atom-sized Primordial Black Holes Could Weigh Millions of Tons, Experts RAtom-sized Primordial Black Holes Are Extremely Dense Objects That Could Weigh Millions of Tons, Experts Reveal

Posted by in categories: cosmology, particle physics

One of Albert Einstein’s theory of general relativity’s most fascinating predictions is the possibility of black holes, which are created after a massive star reaches the end of its life and collapses. Supermassive black holes as big as 100,000 or ten billion times the Sun are commonly found at the center of most galaxies.

Those are the biggest form of black holes, but it is also thought that primordial black holes (PBHs) also exist. Unlike the big ones, these tiny black holes emerged in the early cosmos through the gravitational collapse of extraordinarily dense areas.

Feb 13, 2023

‘Atomtronic’ battery made from Bose–Einstein condensate

Posted by in category: particle physics

face_with_colon_three year 2017 This is essentially a light based battery 🔋 😳


Device running on atoms, not electrons, could power atom-based circuits.

Feb 12, 2023

Can You Trust Your Quantum Simulator? MIT Physicists Report a New Quantum Phenomenon

Posted by in categories: computing, particle physics, quantum physics

Physics gets strange at the atomic scale. Scientists are utilizing quantum analog simulators – laboratory experiments that involve cooling numerous atoms to low temperatures and examining them using precisely calibrated lasers and magnets – to uncover, harness, and control these unusual quantum effects.

Scientists hope that any new understanding gained from quantum simulators will provide blueprints for designing new exotic materials, smarter and more efficient electronics, and practical quantum computers. But in order to reap the insights from quantum simulators, scientists first have to trust them.

That is, they have to be sure that their quantum device has “high fidelity” and accurately reflects quantum behavior. For instance, if a system of atoms is easily influenced by external noise, researchers could assume a quantum effect where there is none. But there has been no reliable way to characterize the fidelity of quantum analog simulators, until now.

Feb 12, 2023

Tiny black holes can compress Mount Everest into an atom size

Posted by in categories: cosmology, particle physics

These tiny black holes lose mass faster than their massive counterparts, emitting Hawking radiation until they finally evaporate.

One of the most intriguing predictions of Einstein’s general theory of relativity.

When a sufficiently massive star runs out of fuel, it explodes, and the remaining core collapses, leading to the formation of a stellar black hole (ranging from 3 to 100 solar masses).

Continue reading “Tiny black holes can compress Mount Everest into an atom size” »

Feb 11, 2023

A Blast Chiller for the Quantum World

Posted by in categories: particle physics, quantum physics

Through optomechanical experiments, scientists aim to delve into the boundaries of the quantum realm and lay the groundwork for the creation of highly sensitive quantum sensors. In these experiments, everyday visible objects are coupled to superconducting circuits through electromagnetic fields.

To produce functional superconductors, these experiments are conducted inside cryostats at a temperature of around 100 millikelvins. However, this is still far from low enough to truly enter the quantum world. In order to observe quantum effects on large-scale objects, they must be cooled to nearly absolute zero.

Absolute zero is the theoretical lowest temperature on the thermodynamic temperature scale. At this temperature, all atoms of an object are at rest and the object does not emit or absorb energy. The internationally agreed-upon value for this temperature is −273.15 °C (−459.67 °F; 0.00 K).

Feb 11, 2023

A mind-blowing explanation of the speed of light | Michelle Thaller | Big Think

Posted by in categories: information science, particle physics

New videos DAILY: https://bigth.ink.
Join Big Think Edge for exclusive video lessons from top thinkers and doers: https://bigth.ink/Edge.

The only things that travel at the speed of light are photons. Nothing with any mass at all can travel at the speed of light because as it gets closer and closer to the speed of light, its mass increases. And if it were actually traveling at the speed of light, it would have an infinite mass. Light does not experience space or time. It’s not just a speed going through something. All of the universe shifts around this constant, the speed of light. Time and space itself stop when you go that speed.

Continue reading “A mind-blowing explanation of the speed of light | Michelle Thaller | Big Think” »

Feb 11, 2023

How to make a black hole | NASA’s Michelle Thaller | Big Think

Posted by in categories: cosmology, particle physics

How to make a black hole.
New videos DAILY: https://bigth.ink.
Join Big Think Edge for exclusive video lessons from top thinkers and doers: https://bigth.ink/Edge.

There’s more than one way to make a black hole, says NASA’s Michelle Thaller. They’re not always formed from dead stars. For example, there are teeny tiny black holes all around us, the result of high-energy cosmic rays slamming into our atmosphere with enough force to cram matter together so densely that no light can escape.

Continue reading “How to make a black hole | NASA’s Michelle Thaller | Big Think” »