Menu

Blog

Archive for the ‘particle physics’ category: Page 232

Oct 23, 2022

Auroras blasted a 250-mile-wide hole in Earth’s ozone layer

Posted by in category: particle physics

Auroras set off spectacular light shows in the night sky, but they are also illuminating another reason the ozone layer is being eaten away.

Although humans are to blame for much of the ozone layer’s depletion, observations of a type of aurora known as an isolated proton aurora have revealed a cause of ozone depletion that comes from space: Charged particles in plasma belched out by solar flares and coronal mass ejections also keep gnawing at the ozone layer. Before now, the influence of these particles were only vaguely known.

Oct 23, 2022

Unexpected Behavior of Hybrid Matter–Antimatter Atoms in Superfluid Helium Surprises Physicists at CERN

Posted by in category: particle physics

Atom containing an antiproton, the proton’s antimatter equivalent, in place of an electron has an unexpected response to laser light when immersed in superfluid helium, reports the ASACUSA collaboration at CERN

Established in 1954 and headquartered in Geneva, Switzerland, CERN is a European research organization that operates the Large Hadron Collider, the largest particle physics laboratory in the world. Its full name is the European Organization for Nuclear Research (French: Organisation européenne pour la recherche nucléaire) and the CERN acronym comes from the French Conseil Européen pour la Recherche Nucléaire.

Oct 22, 2022

US7709819B2 — Apparatus and method for long-term storage of antimatter

Posted by in categories: particle physics, robotics/AI

A long-term antimatter storage device that may be energized by a low power magnetron and can function autonomously for hundreds of hours on the energy provided by batteries. An evacuated, cryogenic container is arranged with a source of positrons and a source of electrons positioned in capture relation to one another within the container so as to allow for the formation of a plurality of positronium atoms. A microwave resonator is located within the container forming a circularly polarized standing wave within which the plurality of positronium atoms rotate. Radioactive sources for small stores and low energy positron accelerators for large stores are used to efficiently fill the device with positronium in seconds to minutes. The device may also be arranged to provide for the extraction of positrons. A method for storing antimatter is also provided.

Oct 22, 2022

US20070110208A1 — Antimatter electrical generator

Posted by in categories: innovation, particle physics

The present set of complementary inventions refer to a system for the practical and inexpensive procurement of huge amounts of energy derived from the principles of matter-antimatter generation and annihilation. The generator will comprise the functions of generation, amplification, concentration and collision of photons within a specially designed self-reflective chamber; the generation of particles of matter and antimatter derived from the collision of photons; the ionization of atoms and the production of avalanches of electrons and positrons within a specialized collecting chamber; the separation of electrons and positrons by the action of powerful rotational electromagnetic fields; and, the conversion of said avalanches of electrons and positrons into electrical power.

Oct 22, 2022

An entangled matter-wave interferometer. Now with double the spookiness

Posted by in categories: computing, particle physics, quantum physics

JILA and NIST Fellow James K. Thompson’s team of researchers have for the first time successfully combined two of the “spookiest” features of quantum mechanics to make a better quantum sensor: entanglement between atoms and delocalization of atoms.

Einstein originally referred to as creating spooky action at a distance—the strange effect of quantum mechanics in which what happens to one atom somehow influences another atom somewhere else. Entanglement is at the heart of hoped-for quantum computers, quantum simulators and quantum sensors.

A second rather spooky aspect of quantum mechanics is delocalization, the fact that a can be in more than one place at the same time. As described in their paper recently published in Nature, the Thompson group has combined the spookiness of both entanglement and delocalization to realize a matter-wave interferometer that can sense accelerations with a precision that surpasses the standard quantum limit (a limit on the accuracy of an experimental measurement at a quantum level) for the first time.

Oct 21, 2022

How This Fusion Reactor Will Make Electricity by 2024

Posted by in categories: nuclear energy, particle physics

Can this new nuclear fusion generator make unlimited clean electricity?
https://brilliant.org/ElectricFuture first 200 people get 20% off annual premium subscription.
https://youtu.be/sEt0nIBPL24 Deeper dive into Helion’s materials, methods, and fusion approach. (unlisted bonus content)

• Organizations all across the world are racing to achieve a fusion power breakthrough. Many critics say nuclear fusion is impossible, but Helion Energy believes they’ve cracked the code…

Continue reading “How This Fusion Reactor Will Make Electricity by 2024” »

Oct 21, 2022

Impurities Enable High-Quality Resistive Switching Devices

Posted by in categories: computing, particle physics

Resistive switching random-access memories (RRAMs) integrate information storage and processing into the same device, enabling faster and more energy-efficient computing. However, RRAMs are challenging to fabricate and suffer from inconsistent on-off switching. Now Zheng Jie Tan, Vrindaa Somjit, and collaborators at the Massachusetts Institute of Technology have discovered that adding dopants to the RRAMs dramatically improves their performance and the yield of their fabrication [1]. The researchers say their results provide an additional “knob” to optimize RRAMs, helping position them as one of the leading technologies for so-called in-memory computation.

An RRAM comprises an insulating material sandwiched between two metallic layers. The bits are defined by the amount of current that passes through the device via conduction paths in the insulator under a voltage. If the voltage is strong enough, it can induce the formation or destruction of conduction paths, thus controlling information processing.

While fabricating their device, the researchers added electronegative dopants, such as gold atoms, to the insulating material. The electron redistribution induced by the dopants facilitated the formation of conduction paths, which became more stable and showed increased on-off switching consistency compared with their undoped counterparts. Moreover, doped RRAMs were consistently fabricated with conducting paths already established before the device was used. Undoped RRAMs are often fabricated without such paths, and the postfabrication process required to create them—“electroforming,” involving the application of a very strong voltage—can result in irreparable device damage.

Oct 21, 2022

How Soap Molecules Move Over Water

Posted by in categories: information science, particle physics

Researchers can now predict exactly how soap molecules spread across a body of water, an everyday but surprisingly complex process.

When a tiny drop of soapy water falls onto a pool of liquid, its contents spread out over the pool’s surface. The dynamics of this spreading depend on the local concentration of soap—which varies in time and is difficult to predict—at each point across the entire pool’s surface. Now Thomas Bickel of the University of Bordeaux in Talence, France, and Francois Detcheverry of the University of Lyon, France, have derived an exact time-dependent solution for these distributions [1]. The solution reveals surprisingly rich behaviors in this everyday phenomenon.

The duo considered a surfactant-laden drop spreading over the surface of a deep pool of fluid. Researchers have previously shown that the equations governing the transport of the surfactant particles can be mapped to a partial differential equation known as the Burgers’ equation, which was initially developed to describe flows in turbulent fluids.

Oct 20, 2022

Thinnest ferroelectric material ever paves the way for new energy-efficient devices

Posted by in categories: computing, mobile phones, particle physics

Discovery of intriguing material behavior at small scales could reduce energy demands for computing.

As become smaller and smaller, the materials that power them need to become thinner and thinner. Because of this, one of the key challenges scientists face in developing next-generation energy-efficient electronics is discovering materials that can maintain special electronic properties at an ultrathin size.

Advanced materials known as ferroelectrics present a promising solution to help lower the power consumed by the ultrasmall electronic devices found in cell phones and computers. Ferroelectrics—the electrical analog to ferromagnets—are a class of materials in which some of the atoms are arranged off-center, leading to a spontaneous internal electric charge or polarization. This internal polarization can reverse its direction when scientists expose the material to an external voltage. This offers great promise for ultralow-power microelectronics.

Oct 20, 2022

Energy jet traveling 7 times the speed of light appears to break the laws of physics

Posted by in categories: particle physics, space

Gravitational waves are invisible to the naked eye, but can be detected with instruments such as the Large Interferometer Gravitational Wave Observatory (LIGO) in Pasadena, California. So, after LIGO detected the first blast of waves from the colliding stars in 2017, astronomers around the world trained their telescopes on the merger to learn whatever they could about it. Before long, astronomers saw visible evidence of a high-speed jet of particles, blazing out of the collision site and lighting up globs of matter that had been ejected by the stars.

In their new paper, astronomers analyzed that jet with NASA’s Hubble Space Telescope, the European Space Agency’s Gaia space observatory and several additional radio telescopes on Earth. With these observations, the team calculated both the actual speed of the jet, and the perceived physics-defying speed.

The beyond-light-speed illusion arises from the difference in speed between the particles in the jet, and the light particles (or photons) that they emit. Because the jet’s particles move nearly as fast as the light they emit, it can appear as though particles in the early part of the jet are arriving at Earth at nearly the same time as photons in the later stages of the jet — making it appear as though the jet is actually moving faster than the speed of light.