Menu

Blog

Archive for the ‘particle physics’ category: Page 320

Aug 6, 2021

Synthetic brain cells that store ‘memories’ are possible, new model reveals

Posted by in categories: particle physics, robotics/AI

Scientists have created key parts of synthetic brain cells that can hold cellular “memories” for milliseconds. The achievement could one day lead to computers that work like the human brain.

These parts, which were used to model an artificial brain cell, use charged particles called ions to produce an electrical signal, in the same way that information gets transferred between neurons in your brain.

Aug 6, 2021

Nuclear ‘Power Balls’ May Make Meltdowns a Thing of the Past

Posted by in categories: nuclear energy, particle physics

Circa 2020


The basic idea behind all nuclear power plants is the same: Convert the heat created by nuclear fission into electricity. There are several ways to do this, but in each case it involves a delicate balancing act between safety and efficiency. A nuclear reactor works best when the core is really hot, but if it gets too hot it will cause a meltdown and the environment will get poisoned and people may die and it will take billions of dollars to clean up the mess.

The last time this happened was less than a decade ago, when a massive earthquake followed by a series of tsunamis caused a meltdown at the Fukushima Daiichi power plant in Japan. But a new generation of reactors coming online in the next few years aims to make these kinds of disasters a thing of the past. Not only will these reactors be smaller and more efficient than current nuclear power plants, but their designers claim they’ll be virtually meltdown-proof. Their secret? Millions of submillimeter-size grains of uranium individually wrapped in protective shells. It’s called triso fuel, and it’s like a radioactive gobstopper.

Continue reading “Nuclear ‘Power Balls’ May Make Meltdowns a Thing of the Past” »

Aug 5, 2021

Quantum Crystal With “Time Reversal” Could Be a New Dark Matter Sensor

Posted by in categories: cosmology, particle physics, quantum physics

Physicists at the National Institute of Standards and Technology (NIST) have linked together, or “entangled,” the mechanical motion and electronic properties of a tiny blue crystal, giving it a quantum edge in measuring electric fields with record sensitivity that may enhance understanding of the universe.

The quantum sensor consists of 150 beryllium ions (electrically charged atoms) confined in a magnetic field, so they self-arrange into a flat 2D crystal just 200 millionths of a meter in diameter. Quantum sensors such as this have the potential to detect signals from dark matter — a mysterious substance that might turn out to be, among other theories, subatomic particles that interact with normal matter through a weak electromagnetic field. The presence of dark matter could cause the crystal to wiggle in telltale ways, revealed by collective changes among the crystal’s ions in one of their electronic properties, known as spin.

As described in the August 6, 2021, issue of Science, researchers can measure the vibrational excitation of the crystal — the flat plane moving up and down like the head of a drum — by monitoring changes in the collective spin. Measuring the spin indicates the extent of the vibrational excitation, referred to as displacement.

Aug 5, 2021

‘Bogolons’ make graphene superconducting

Posted by in categories: computing, particle physics, quantum physics

2D form of carbon transforms into a high-temperature superconductor if placed near a Bose-Einstein condensate, say theorists.


Graphene can be made to superconduct by placing it next to a Bose-Einstein condensate – a form of matter in which all the atoms are in the same quantum state. According to the theorists who discovered it, this new type of superconductivity stems from interactions between the electrons in graphene and quasiparticles called “bogolons” in the condensate. If demonstrated experimentally, the work could make it possible to develop new types of hybrid superconducting devices for applications in quantum sensing and quantum computing.

Conventional superconductivity occurs when phonons – quasiparticles that arise from vibrations in a material’s crystal lattice – cause electrons in the material to pair up despite their mutual electromagnetic repulsion. If the material is cooled to sufficiently low temperatures, these paired electrons (known as Cooper pairs) can travel through it without any resistance.

Continue reading “‘Bogolons’ make graphene superconducting” »

Aug 3, 2021

‘God particle’: TAU researchers further understanding of physics at CERN

Posted by in category: particle physics

The scientists found evidence that “beauty” quarks do not decay in the way they should following the Standard Model.

Beauty quarks, particles similar to but heavier than electrons, interact with all forces in the same way, so they should decay into muons and electrons at the same rate.

However, the data collected by the LHCb seems to show that these quarks are decaying into muons less often than they decay into electrons, which should only be possible if unknown particles are interfering and making them more likely to decay into electrons.

Aug 3, 2021

A Cousin of Table Salt Could Make Rechargeable Batteries Faster and Safer

Posted by in categories: computing, mobile phones, particle physics, sustainability, transportation

One of the biggest factors affecting consumer adoption of electric vehicles (EVs) is the amount of time required to recharge the vehicles—usually powered by lithium-ion batteries. It can take up to a few hours or overnight to fully recharge EVs, depending on the charging method and amount of charge remaining in the battery. This forces drivers to either limit travel away from their home chargers or to locate and wait at public charging stations during longer trips.

Why does it take so long to fully charge a battery, even those used to power smaller devices, such as mobile phones and laptops? The primary reason is that devices and their chargers are designed so the rechargeable lithium-ion batteries charge only at slower, controlled rates. This is a safety feature to help prevent fires, and even explosions, due to tiny, rigid tree-like structures, called dendrites, that can grow inside a lithium battery during fast charging and induce short-circuits inside the battery.

To address the need for a more practical lithium-ion battery, researchers from the University of California San Diego (UC San Diego) worked with scientists at Oak Ridge National Laboratory (ORNL) to conduct neutron scattering experiments on a new type of material that could be used to make safer, faster-charging batteries. The researchers produced samples of lithium vanadium oxide (Li3V2O5), a “disordered rock salt” similar to table salt but with a certain degree of randomness in the arrangement of its atoms. The samples were placed in a powerful neutron beam that enabled observing the activity of ions inside the material after a voltage was applied.

Aug 1, 2021

This Miniature Particle Accelerator Powers a Tiny Laser With Huge Promise

Posted by in categories: particle physics, space

Particle accelerators are hugely important in the study of the matter of the Universe, but the ones we think of tend to be gigantic instruments – surrounding cities in some cases. Now scientists have made a much smaller version to power an advanced laser, a setup that could be just as useful as its larger counterparts.

The particle accelerator in question is a plasma wakefield accelerator, which generates short and intense bursts of electrons, and the laser it’s powering is what’s known as a free-electron laser (FEL), which uses its light to analyze atoms, molecules, and condensed matter in incredibly high resolutions.

While this scenario has been tried before, the resulting laser light hasn’t been intense enough to be useful at smaller scales. Here, the researchers were able to keep the setup enclosed in few normal-sized rooms while amplifying the final electron beam produced by the laser, increasing the intensity by 100 times in the last step of the process.

Jul 31, 2021

Acoustic tweezers can pick up objects without physical contact

Posted by in categories: biological, chemistry, particle physics

Researchers from Tokyo Metropolitan University have developed a new technology which allows non-contact manipulation of small objects using sound waves. They used a hemispherical array of ultrasound transducers to generate a 3D acoustic field that stably trapped and lifted a small polystyrene ball from a reflective surface. Their technique employs a method similar to laser trapping in biology, but adaptable to a wider range of particle sizes and materials.

The ability to move objects without touching them might sound like magic, but in the world of biology and chemistry, technology known as has been helping scientists use light to move microscopic objects around for many years. In fact, half of the 2018 Nobel Prize for Physics, awarded to Arthur Ashkin (1922–2020) was in recognition of the remarkable achievements of this technology. But the use of laser light is not without its failings, particularly the limits placed on the properties of the objects which can be moved.

Enter acoustic trapping, an alternative that uses sound instead of optical waves. Sound waves may be applied to a wider range of sizes and materials, and successful manipulation is now possible for millimeter-sized particles. Though they haven’t been around for as long as their optical counterparts, acoustic levitation and manipulation show exceptional promise for both lab settings and beyond. But the that need to be surmounted are considerable. In particular, it is not easy to individually and accurately control vast arrays of ultrasound transducers in real time, or to get the right sound fields to lift objects far from the transducers themselves, particularly near surfaces that reflect .

Jul 30, 2021

New particle discovered at CERN is a long-lived double charmer

Posted by in category: particle physics

Physicists at CERN have discovered an exotic new particle that’s quite charming. Known as Tcc+, the particle belongs to a rare class called tetraquarks, and its unusual composition makes it the longest-lived exotic hadron found so far.

Matter is made up of fundamental particles called quarks, which come in six “flavors”: up, down, strange, charm, top and bottom. These quarks group together in different ways to make up different types of matter – baryons like protons and neutrons are made up of several quarks, while mesons are formed from quarks paired with antiquarks, their antimatter equivalents.

Baryons are usually comprised of two or three quarks, but exotic baryons made up of four or five have been discovered in recent years, after being theorized for decades. Tcc+ is one of these unusual particles with four quarks, known as a tetraquark.

Jul 30, 2021

Scientists transform water into shiny, golden metal

Posted by in category: particle physics

In a mind-mending experiment, scientists transformed purified water into metal for a few fleeting seconds, thus allowing the liquid to conduct electricity.

Unfiltered water can already conduct electricity — meaning negatively charged electrons can easily flow between its molecules — because unfiltered water contains salts, according to a statement about the new study. However, purified water contains only water molecules, whose outermost electrons remain bound to their designated atoms, and thus, they can’t flow freely through the water.