Toggle light / dark theme

Scientists Propose New Explanation for “Impossible” Gamma-Ray Burst

In 2022, scientists from Northwestern University presented novel observational data indicating that long gamma-ray bursts (GRBs) might originate from the collision of a neutron star with another dense celestial body, such as another neutron star or a black hole — a finding that was previously believed to be impossible.

Now, another Northwestern team offers a potential explanation for what generated the unprecedented and incredibly luminous burst of light.

After developing the first numerical simulation that follows the jet evolution in a black hole — neutron star merger out to large distances, the astrophysicists discovered that the post-merger black hole can launch jets of material from the swallowed neutron star.

The Boundary Between Black Holes & Neutron Stars

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE
↓ More info below ↓

Sign Up on Patreon to get access to the Space Time Discord!
/ pbsspacetime.

Check out the Space Time Merch Store.
https://pbsspacetime.com/

Sign up for the mailing list to get episode notifications and hear special announcements!
https://mailchi.mp/1a6eb8f2717d/space… we detected the very first gravitational wave, a new window was opened to the mysteries of the universe. We knew we’d see things previously thought impossible. And we just did — an object on the boundary between neutron stars and black holes, which promises to reveal the secrets of both. Hosted by Matt O’Dowd Written by Matt O’Dowd Graphics by Leonardo Scholzer, Yago Ballarini, & Pedro Osinski Directed by: Andrew Kornhaber Camera Operator: Bahaar Gholipour Executive Producers: Eric Brown & Andrew Kornhaber Previous Episodes Referenced: Ligo’s First Detection of Gravitational Waves: • LIGO’s First Detection of Gravitation… The Future of Gravitational Waves: • The Future of Gravitational Waves How to build a black hole • How to Build a Black Hole Strange Stars — • Strange Stars | Space Time | PBS Digi… Special Thanks to Our Patreon Supporters Big Bang Supporters Robert Doxtator Ahmad Jodeh Caed Aldwych Radu Negulescu Alexander Tamas Morgan Hough Juan Benet Fabrice Eap David Nicklas Quasar Supporters Alec S-L Christina Oegren Mark Heising Vinnie Falco Hypernova Supporters william bryan Julian Tyacke Syed Ansar John R. Slavik Mathew Danton Spivey Donal Botkin John Pollock Edmund Fokschaner Joseph Salomone Hank S Matthew O’Connor chuck zegar Jordan Young John Hofmann Timothy McCulloch Gamma Ray Burst Supporters fieldsa eleanory Cody Lubinsky Peter Mertz Elliot Azizollahi Kevin O’Connell Bryan Dawley Richard Deighton Isaac Suttell Devon Rosenthal Oliver Flanagan Mikhail Klakotskiy Dawn M Fink Bleys Goodson Darryl J Lyle Robert Walter jechamt Bruce B Ismael Montecel M D Mark Daniel Cohen Andrew Richmond Simon Oliphant Mirik Gogri David Hughes Aria Ahmad Brandon Lattin Yannick Weyns Nickolas Andrew Freeman Protius Protius Brian Blanchard Shane Calimlim Tybie Fitzhugh Patrick Sutton Robert Ilardi Eric Kiebler Tatiana Vorovchenko Craig Stonaha Michael Conroy Graydon Goss Frederic Simon Greg Smith Sean Warniaha Tonyface John Robinson A G Kevin Lee Nick Wright Adrian Hatch Paul Rose Yurii Konovaliuk John Funai Cass Costello Geoffrey Short Bradley Jenkins Kyle Hofer Tim Stephani Luaan AlecZero Malte Ubl Nick Virtue Scott Gossett David Bethala Dan Warren John Griffith Daniel Lyons Josh Thomas DFaulk Kevin Warne Andreas Nautsch Brandon labonte.

When we detected the very first gravitational wave, a new window was opened to the mysteries of the universe. We knew we’d see things previously thought impossible. And we just did — an object on the boundary between neutron stars and black holes, which promises to reveal the secrets of both.

Hosted by Matt O’Dowd.

Astronomers inspect a peculiar nuclear transient

An international team of astronomers has employed a set of space telescopes to observe a peculiar nuclear transient known as AT 2019avd. Results of the observational campaign, presented in a paper published December 21 on the pre-print server arXiv, deliver important insights into the properties and behavior of this transient.

Nuclear astrophysics is key to understanding supernova explosions, and in particular the synthesis of the chemical elements that evolved after the Big Bang. Therefore, detecting and investigating nuclear transient events could be essential in order to advance our knowledge in this field.

At a redshift of 0.028, AT 2019avd is a peculiar nuclear transient discovered by the Zwicky Transient Facility (ZTF) in 2009. The transient has been detected in various wavelengths, from radio to soft X-rays, and has recently exhibited two continuous flaring episodes with different profiles, spanning over two years.

What Is Time? | Professor Sean Carroll Explains Presentism and Eternalism

Want to stream more content like this… and 1,000’s of courses, documentaries & more?

👉 👉 Start Your Free Trial of Wondrium https://tinyurl.com/jhj7xbxd 👈 👈

It’s said that the clock is always ticking, but there’s a chance that it isn’t. The theory of “presentism” states that the current moment is the only thing that’s real, while “eternalism” is the belief that all existence in time is equally real. Find out if the future is really out there and predictable—just don’t tell us who wins the big game next year.

This video is episode two from the series “Mysteries of Modern Physics: Time”, Presented by Sean Carroll.
Learn more about the physics of time at https://www.wondrium.com/YouTube.

00:00 Science and Philosophy Combine When Studying Time.
2:30 Experiments Prove Continuity of Time.
6:47 Time Is Somewhat Predictable.
8:10 Why We Think of Time Differently.
8:49 Our Perception of Time Leads to Spacetime.
11:54 We Dissect Presentism vs Eternalism.
15:43 Memories and Items From the Past Make it More Real.
17:47 Galileo Discovers Pendulum Speeds Are Identical.
25:00 Thought Experiment: “What if Time Stopped?”
29:07 Time Connects Us With the Outside World.

Welcome to Wondrium on YouTube.

Can Machine Learning Predict Chaos? This Paper from UT Austin Performs a Large-Scale Comparison of Modern Forecasting Methods on a Giant Dataset of 135 Chaotic Systems

The science of predicting chaotic systems lies at the intriguing intersection of physics and computer science. This field delves into understanding and forecasting the unpredictable nature of systems where small initial changes can lead to significantly divergent outcomes. It’s a realm where the butterfly effect reigns supreme, challenging the traditional notions of predictability and order.

Central to the challenge in this domain is the unpredictability inherent in chaotic systems. Forecasting these systems is complex due to their sensitive dependence on initial conditions, making long-term predictions highly challenging. Researchers strive to find methods that can accurately anticipate the future states of such systems despite the inherent unpredictability.

Prior approaches in chaotic system prediction have largely centered around domain-specific and physics-based models. These models, informed by an understanding of the underlying physical processes, have been the traditional tools for tackling the complexities of chaotic systems. However, their effectiveness is often limited by the intricate nature of the systems they attempt to predict.

Discovery of Two Planetary Systems around Sun-like Stars

A study published today (Dec. 15) in the journal Astronomy & Astrophysics reveals the discovery of two new planetary systems orbiting stars similar to our sun, also known as solar analogs.

The study was led by Dr. Eder Martioli, a full researcher at the Laboratório Nacional de Astrofísica (LNA/MCTI) and an associate researcher at the Institut d’astrophysique de Paris (IAP), and by Dr. Guillaume Hébrard, a researcher at the Institut d’astrophysique de Paris (IAP).

Observations responsible for detecting these two systems, named TOI-1736 and TOI-2141, were conducted using NASA’s TESS space telescope and the SOPHIE spectrograph installed on the 1.93 m telescope at the Observatoire de Haute-Provence (OHP) in southern France, both illustrated in Figure 1.

What Happens Inside a Proton?

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
/ pbsspacetime.

If we ever want to simulate a universe, we should probably learn to simulate even a single atomic nucleus. But it’s taken some of the most incredible ingenuity of the past half-century to figure out how that out. All so that today I can teach you how to simulate a very very small universe.

Check out the Space Time Merch Store.
https://www.pbsspacetime.com/shop.

Sign up for the mailing list to get episode notifications and hear special announcements!
https://mailchi.mp/1a6eb8f2717d/space… the Entire Space Time Library Here: https://search.pbsspacetime.com/ Hosted by Matt O’Dowd Written by Euan McLean & Matt O’Dowd Post Production by Leonardo Scholzer, Yago Ballarini, Pedro Osinski, Adriano Leal & Stephanie Faria GFX Visualizations: Ajay Manuel Directed by Andrew Kornhaber Associate Producer: Bahar Gholipour Executive Producers: Eric Brown & Andrew Kornhaber Executives in Charge (PBS): Adam Dylewski, Maribel Lopez Director of Programming (PBS): Gabrielle Ewing Spacetime is produced by Kornhaber Brown for PBS Digital Studios. This program is produced by Kornhaber Brown, which is solely responsible for its content. © 2022 PBS. All rights reserved. End Credits Music by J.R.S. Schattenberg: / multidroideka Special Thanks to Our Patreon Supporters Big Bang Supporters Steffen Bendel Gautam Shine NullBlox. ZachryWilsn Adam Hillier Bryce Fort Peter Barrett David Neumann Charlie Leo Koguan Ahmad Jodeh Alexander Tamas Morgan Hough Amy Hickman Juan Benet Vinnie Falco Fabrice Eap Mark Rosenthal David Nicklas Quasar Supporters Glenn Sugden Dr. Sujasha Gupta Vaka Dr. Vikram Reddy Vaka Alex Kern Ethan Cohen Stephen Wilcox Christina Oegren xaexyz Mark Heising Hank S Hypernova Supporters john ibes Vyce Ailour Brandon Paddock Oneamazinguy Ken S Gregory Forfa Kirk Honour Mark Evans drollere Joe Moreira Marc Armstrong Scott Gorlick Paul Stehr-Green Russell Pope Ben Delo Scott Gray Антон Кочков John R. Slavik Mathew Donal Botkin John Pollock Edmund Fokschaner Joseph Salomone chuck zegar Jordan Young John Hofmann Daniel Muzquiz Gamma Ray Burst Supporters Kane Holbrook Bradley S. Isenbek Jason Bowen John Yaraee Ross Story teng guo Mason Dillon Harsh Khandhadia Thomas Tarler bsgbryan Sean McCaul Carsten Quinlan Susan Albee Frank Walker Matt Q WhizBangery MHL SHS Terje Vold Anatoliy Nagornyy comboy Andre Stechert Paul Wood Kent Durham jim bartosh Nubble Scott R Calkins The Mad Mechanic Ellis Hall John H. Austin, Jr. Diana S Ben Campbell Faraz Khan Almog Cohen Alex Edwards Ádám Kettinger MD3 Endre Pech Daniel Jennings Cameron Sampson Geoffrey Clarion Darren Duncan Russ Creech Jeremy Reed Eric Webster David Johnston Web Browser Michael Barton Mr T Andrew Mann Isaac Suttell Devon Rosenthal Oliver Flanagan Bleys Goodson Robert Walter Bruce B Mirik Gogri Mark Delagasse Mark Daniel Cohen Nickolas Andrew Freeman Shane Calimlim Tybie Fitzhugh Robert Ilardi Eric Kiebler Craig Stonaha Graydon Goss Frederic Simon Tonyface John Robinson A G David Neal justahat John Funai Tristan Bradley Jenkins Kyle Hofer Daniel Stříbrný Luaan Cody Thomas Dougherty King Zeckendorff Dan Warren Patrick Sutton John Griffith Daniel Lyons DFaulk Kevin Warne.

Search the Entire Space Time Library Here: https://search.pbsspacetime.com/