Menu

Blog

Archive for the ‘physics’ category: Page 170

Nov 15, 2021

Type Of Water Ice Hotter Than The Sun’s Surface Is A New Phase Of Matter

Posted by in categories: physics, space

If you think of very low temperatures, there’s a good chance you are picturing ice. Ice is a quintessential “cold” thing for us. But at extreme pressures, like in the core of large planets, something peculiar can happen. Ice can remain solid but have a temperature hotter than the surface of the Sun.

This type of water ice is called “superionic ice” and has been added to the list of around 20 phases water can structurally form, including ice, liquid, and vapor. Now, researchers report in Nature Physics the discovery and characterization of two superionic ice phases, having found a way of reliably and stably recreating the ice for longer than has previously been achieved to be able to study it.

One superionic phase extends between 200,000 and 60,000 times the atmospheric pressure at sea level and at a temperature of several hundred to over 1,000 ° C. The other phase extends to half the pressure experienced at the center of the Earth and with temperatures of thousands of degrees.

Nov 14, 2021

Laser-free trapping of heavy molecules opens an alternative route to new physics

Posted by in category: physics

Trap based on electric fields alone boosts the search for a non-zero electron electric dipole moment and other phenomena beyond the Standard Model.

Nov 14, 2021

Science Confirms That Forgetting Things Is Actually A Sign Of Very High Intelligence

Posted by in categories: physics, science, space

27-Year-Old Woman To Become First Female Ever To Visit Every Country On Earth27-Year-Old Woman To Become First Female Ever To Visit Every Country On EarthScience, science nature articles, physics topics, space information, technolog services, view search history, astronomy articlessci-nature.

Nov 11, 2021

Gravitational wave treasure trove shows black holes, neutron stars colliding

Posted by in categories: cosmology, physics

Scientists have released the largest catalog of gravitational wave detections to date, shedding new light on interactions between the most massive objects in the universe, black holes and neutron stars.

The catalog was compiled by three groundbreaking detectors: the two Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors located in Hanford, Washington, and Livingston, Louisiana, and the European Virgo gravitational wave antenna in Pisa, Italy.

Nov 10, 2021

Gravitational Waves Will Soon Lift Veil On Black Holes, Says Portuguese Astrophysicist

Posted by in categories: cosmology, physics

Of the cosmos’ four fundamental forces, gravity is the one that grasps us even before we exit the womb. From our first few minutes of life until we lose the fight to lift our heads from death’s pillow, this weakest of nature’s fundamental forces continues to elude researchers.

In the last few years, however, gravitational wave astronomy has made great strides in detecting gravitational radiation rippling through spacetime at the speed of light.

Einstein first predicted that any accelerating mass should emit gravitational radiation in the form of waves. Gravitational waves were first indirectly detected almost 20 years ago. But it was only recently, in 2,015 that the ground-based LIGO (Laser Interferometer Gravitational-wave Observatory) detected waves from two merging stellar mass black holes over a billion light years distant in the general direction of the Southern Hemisphere’s Magellanic Clouds.

Nov 9, 2021

Look: Largest-ever catalog of gravitational-wave events

Posted by in categories: cosmology, physics

In 2,015 researchers at the Laser Interferometer Gravitational-Wave Observatory (LIGO) captured the first direct evidence of gravitational waves, more than a century after the phenomenon was first proposed.


Gravitational-wave events have only been detectable for a few years, and a new study shows the remarkable diversity of waves caused by black hole mergers.

Nov 8, 2021

Scientists detect a ‘tsunami’ of gravitational waves

Posted by in categories: cosmology, physics

A team of international scientists, including researchers from The Australian National University (ANU), have unveiled the largest number of gravitational waves ever detected.

The discoveries will help solve some of the most complex mysteries of the Universe, including the building blocks of matter and the workings of space and time.

Continue reading “Scientists detect a ‘tsunami’ of gravitational waves” »

Nov 8, 2021

Discovery of segmented Fermi surface induced by Cooper pair momentum on a hybrid material platform

Posted by in categories: energy, physics

In a new report now published in Science, primary authors Zhen Zhu, Michal Papaj, and an international research team in physics, materials science, and condensed matter at the Jiao Tong University, China, Massachusetts Institute of Technology, U.S., and the Chinese Academy of Sciences discovered the Fermi surface of supercurrent-induced quasiparticles in a superconducting system for the first time. This discovery comes 50 years after the initial theoretical prediction was made by physicist Peter Fulde and revealed the impact of the finite Cooper pair momentum on the quasiparticle spectrum. In condensed matter physics, Cooper pairs are a pair of electrons with opposite spins loosely bound due to electron-lattice interactions. Superconductivity is based on their condensation to Bosonic states at low temperatures. The interplay of superconductivity and magnetic fields leads to the phenomenon of a ‘segmented Fermi surface. A leading author of this work, MIT Professor of Physics Liang Fu, outlined the significance of this discovery.

Supercurrent flow in a superconductor

Physicists assume that a sufficiently large supercurrent can close the energy gap in a superconductor and create gapless quasiparticles via the Doppler shift of quasiparticle energy. This is facilitated by the finite momentum of Cooper pairs in the presence of supercurrent flow in a superconductor, where the shift in Cooper pair momentum can result in a Doppler shift. In this work, Zhu et al. used quasiparticle interference to image the field-controlled Fermi surface of bismuth telluride (Bi2Te3) thin films proximitized by the superconductor niobium diselenide (NbSe2). A small applied in-plane magnetic field induced a screening supercurrent, which led to finite momentum pairing on the topological surface states of Bi2Te3. The scientists identified distinct interference patterns to indicate a gapless superconducting state with a segmented Fermi surface to reveal the strong impact of the finite Cooper pair momentum on the quasiparticle spectrum.

Nov 8, 2021

Compact Fusion Power Plant Concept Uses State-of-the-Art Physics To Improve Energy Production

Posted by in categories: energy, physics

Fusion power plants use magnetic fields to hold a ball of current-carrying gas (called a plasma.

Plasma is one of the four fundamental states of matter, along with solid, liquid, and gas. It is an ionized gas consisting of positive ions and free electrons. It was first described by chemist Irving Langmuir in the 1920s.

Nov 7, 2021

We now know the big bang theory is (probably) not how the universe began

Posted by in categories: cosmology, physics, singularity

The Big Bang still happened a very long time ago, but it wasn’t the beginning we once supposed it to be.

Where did all this come from? In every direction we care to observe, we find stars, galaxies, clouds of gas and dust, tenuous plasmas, and radiation spanning the gamut of wavelengths: from radio to infrared to visible light to gamma rays. No matter where or how we look at the universe, it’s full of matter and energy absolutely everywhere and at all times. And yet, it’s only natural to assume that it all came from somewhere. If you want to know the answer to the biggest question of all — the question of our cosmic origins — you have to pose the question to the universe itself, and listen to what it tells you.

Today, the universe as we see it is expanding, rarifying (getting less dense), and cooling. Although it’s tempting to simply extrapolate forward in time, when things will be even larger, less dense, and cooler, the laws of physics allow us to extrapolate backward just as easily. Long ago, the universe was smaller, denser, and hotter. How far back can we take this extrapolation? Mathematically, it’s tempting to go as far as possible: all the way back to infinitesimal sizes and infinite densities and temperatures, or what we know as a singularity. This idea, of a singular beginning to space, time, and the universe, was long known as the Big Bang.