Menu

Blog

Archive for the ‘physics’ category: Page 3

Jan 11, 2025

A Minecraft-based benchmark to train and test multi-modal multi-agent systems

Posted by in categories: nanotechnology, physics

Multiterminal Josephson junctions, nanoscale devices with unique electronic properties, comprise non-superconducting metallic material coupled to three or more superconducting leads. These devices have proved to be promising platforms for the exploration of topological phenomena in condensed matter physics.

Researchers at Northwestern University and Aalto University recently proposed a new approach to studying the topological signatures of multiterminal Josephson junctions, which relies on the collection of resistance measurements.

Using their approach, outlined in a paper published in Physical Review Letters, they were able to observe these signatures, while also unveiling resistance patterns that are far richer than those predicted by physics theories.

Jan 11, 2025

Galactic Gravity’s Secret Role in Black Hole Collisions

Posted by in categories: cosmology, physics

Galactic gravity can dramatically impact wide binary stars, pushing them towards unexpected mergers or collisions.

The detection of gravitational waves.

Gravitational waves are distortions or ripples in the fabric of space and time. They were first detected in 2015 by the Advanced LIGO detectors and are produced by catastrophic events such as colliding black holes, supernovae, or merging neutron stars.

Jan 10, 2025

Researchers Unlock Fusion Mysteries with Novel Plasma Modeling, Propelling Nuclear Fusion Closer to Reality

Posted by in categories: nuclear energy, physics

Chinese researchers say that recent advancements in the burgeoning field of inertial confinement fusion are bringing us one step closer to making accessible nuclear fusion a reality.

The new findings, which incorporate innovative new modeling approaches, could open new avenues for the exploration of the mysteries surrounding high-energy-density physics, and could potentially offer a window toward understanding the physics of the early universe.

Harnessing controlled nuclear fusion as a potential source of clean energy has seen several significant advancements in recent years, and the recent research by a Chinese team, funded by the Strategic Priority Research Program of Chinese Academy of Sciences and published in Science Bulletin last month, signals the next wave of insights with what the team calls a “surprising observation” involving supra-thermal ions during observations of fusion burning plasmas at National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in California.

Jan 9, 2025

25-year update on the “Millennium problems” in physics

Posted by in category: physics

How much progress have physicists made on the 10 millennium problems?

So far their success rate is 1 out of 10.


In the year 2000, physicists created a list of the ten most important unsolved problems in their field. 25 years later, here’s where we are.

Jan 9, 2025

High-resolution simulations explore the physics of star formation

Posted by in categories: materials, physics

Stars are born in clouds of gas and dust, making it difficult to observe their early development. But researchers at Chalmers have now succeeded in simulating how a star with the mass of the sun absorbs material from the surrounding disk of material—a process called accretion.

Jan 9, 2025

Physicists believe they have resolved Stephen Hawking’s renowned black hole paradox

Posted by in categories: cosmology, physics

New theory suggests black holes may have “hair” to solve the information paradox.

Jan 8, 2025

Origins of black holes are revealed in their spin, gravitational wave data analysis finds

Posted by in categories: cosmology, physics

The size and spin of black holes can reveal important information about how and where they formed, according to new research.

The study, led by scientists at Cardiff University, tests the idea that many of the black holes observed by astronomers have merged multiple times within densely populated environments containing millions of stars.

The work is published in the journal Physical Review Letters.

Jan 7, 2025

Dark Energy Camera captures thousands of galaxies in stunning image

Posted by in categories: cosmology, evolution, physics

Focused on the Antlia Cluster — a dense assembly of galaxies within the Hydra–Centaurus Supercluster located around 130 million light-years from Earth — the image captures only a small portion of the 230 galaxies that make up the cluster, revealing a diverse array of galaxy types within as well as thousands of background galaxies beyond.

The Dark Energy Camera (DECam) was originally built for the Dark Energy Survey (DES), an international collaboration that began in 2013 and concluded its observations in 2019. Over the course of the survey, scientists mapped hundreds of millions of galaxies in an effort to understand the nature of dark energy — a mysterious force thought to drive the accelerated expansion of our universe. The universe’s acceleration challenges predictions made by Albert Einstein’s theory of general relativity, making dark energy one of the most perplexing mysteries in modern cosmology. Dark matter, meanwhile, refers to the mysterious and invisible substance that seems to hold galaxies together. This is another major conundrum scientists are still trying to fully penetrate.

Observations made of galaxy clusters have already helped scientists unravel some of the processes driving galaxy evolution as they search for clues about the history of our universe. In this sense, galaxy clusters act as “cosmic laboratories” where gravitational influence driven by dark matter and cosmic expansion driven by dark energy can be studied on incredibly large scales.

Jan 7, 2025

Nickel-58 nucleus may host elusive toroidal dipole excitations

Posted by in categories: materials, physics

Dipole toroidal modes are a unique set of excitations that are predicted to occur in various physical systems, ranging from atomic nuclei to metamaterials. What characterizes these excitations, or modes, is a toroidal distribution of currents, which results in the formation of vortex-like structures.

A classic example is smoke rings, the characteristic “rings” of smoke produced when puffs of smoke are released into the air through a narrow opening. Physics theories have also predicted the existence of toroidal dipole excitations in atomic nuclei, yet observing these modes has so far proved challenging.

Researchers at Technische Universitat Darmstadt, the Joint Institute for Nuclear Research, and other institutes recently identified candidates for toroidal dipole excitations in the nucleus 58 Ni for the very first time. Their paper, published in Physical Review Letters, opens new possibilities for the experimental observations of these elusive modes in .

Jan 7, 2025

Physicists explain a stellar stream’s distinctive features

Posted by in categories: cosmology, physics

Physicists have proposed a solution to a long-standing puzzle surrounding the GD-1 stellar stream, one of the most well-studied streams within the galactic halo of the Milky Way, known for its long, thin structure, and unusual spur and gap features.

The team of researchers, led by Hai-Bo Yu at the University of California, Riverside, proposed that a core-collapsing self-interacting (SIDM) “subhalo” — a smaller, satellite halo within the galactic halo — is responsible for the peculiar spur and gap features observed in the GD-1 stellar stream.

Study results appear in The Astrophysical Journal Letters in a paper titled “The GD-1 Stellar Stream Perturber as a Core-collapsed Self-interacting Dark Matter Halo.” The research could have significant implications for understanding the properties of dark matter in the universe.

Page 3 of 33312345678Last