Menu

Blog

Archive for the ‘physics’ category: Page 40

May 3, 2024

Physicists discover new way to make strange metal

Posted by in categories: materials, physics

The work introduces a completely new way to create and study , whose electrons behave differently than those in a conventional metal like copper. “It is a potential new approach to designing these unusual materials,” says Joseph G. Checkelsky, lead principal investigator of the research and Associate Professor of Physics.

Linda Ye, MIT Ph.D. ‘21, is first author of a paper on the work published earlier this year in Nature Physics. “A new way of making strange metals will help us develop a unifying theory behind their behavior. That has been quite challenging to date, and could lead to a better understanding of other materials, including ,” says Ye, now an assistant professor at the California Institute of Technology.

The Nature Physics paper is accompanied by a News & Views article titled, “A strange way to get a strange metal.”

Apr 30, 2024

Astronomers’ simulations support dark matter theory

Posted by in categories: computing, cosmology, physics

Computer simulations by astronomers support the idea that dark matter—matter that no one has yet directly detected but which many physicists think must be there to explain several aspects of the observable universe—exists, according to the researchers, who include those at the University of California, Irvine.

Apr 30, 2024

Superconductivity hunt gets boost from China’s $220 million physics ‘playground’

Posted by in categories: materials, physics

From extreme cold to strong magnets and high pressures, the Synergetic Extreme Condition User Facility (SECUF) provides conditions for researching these potential wonder materials.

Apr 29, 2024

An Engineer Says He’s Found a Way to Overcome Earth’s Gravity

Posted by in categories: physics, space travel

This new propulsion system could rewrite the rules of spaceflight—not to mention completely defy conventional physics.

Apr 29, 2024

Russellian Monism (Stanford Encyclopedia of Philosophy)

Posted by in categories: information science, neuroscience, physics

Russellian monism is a theory in the metaphysics of mind, on which a single set of properties underlies both consciousness and the most basic entities posited by physics. The theory is named for Bertrand Russell, whose views about consciousness and its place in nature were informed by a structuralist conception of theoretical physics. On such a structuralist conception, physics describes the world in terms of its spatiotemporal structure and dynamics (changes within that structure) and says nothing about what, if anything, underlies that structure and dynamics. For example, as it is sometimes put, physics describes what mass and charge do, e.g., how they dispose objects to move toward or away from each other, but not what mass and charge are. Thus, Russell writes the following about the events physics describes:

All that physics gives us is certain equations giving abstract properties of their changes. But as to what it is that changes, and what it changes from and to—as to this, physics is silent. (Russell 1959: 18)

Continue reading “Russellian Monism (Stanford Encyclopedia of Philosophy)” »

Apr 28, 2024

The 7 Strangest Coincidences in the Laws of Nature

Posted by in categories: information science, physics, space

Get started on your science revolution with Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

The universe seems to be ruled by equations and numbers. But why just these equations and why just those numbers? Is it just coincidence? In this video I have collected seven of the weirdest coincidences in physics.

Continue reading “The 7 Strangest Coincidences in the Laws of Nature” »

Apr 28, 2024

Can Informational Realism Help Sort Out the Mind–Body Problem?

Posted by in category: physics

Neutral monism and it’s relation to information physics.


If information is “the relational glue that holds reality together,” the mind–body problem can be reframed in a more satisfactory way.

Continue reading “Can Informational Realism Help Sort Out the Mind–Body Problem?” »

Apr 27, 2024

Why Can’t We Go Faster Than Light?

Posted by in categories: energy, physics, transportation

Imagine you’re in a car, pedal to the metal, racing down the highway, but no matter how hard you push, you can’t surpass the speed of the car next to you, which is effortlessly cruising at the same pace. Now, replace the car with light, and you have a real cosmic conundrum: why can’t anything go faster than light?

Back in 1905, Albert Einstein turned the world of physics upside down with his theory of relativity. This wasn’t just about E=mc² or the bending of space-time; it was about something that touches everything we do: the speed of light, which is roughly 299,792 kilometers per second. According to relativity, no matter how fast you’re moving towards or away from a light source, you will always measure the speed of light at the same constant velocity.

Continue reading “Why Can’t We Go Faster Than Light?” »

Apr 27, 2024

NASA Engineer Claims Major Discovery Of New Force In Physics, But Many Aren’t Convinced

Posted by in category: physics

The team claims to have generated 1G of thrust without any propellant. If true, it would be revolutionary.

Apr 26, 2024

Silicon Photonics Manufacturing Ramps Up

Posted by in categories: energy, physics

The promise of photonics ICs is spurring innovation, but complex processes and a lack of open foundries are keeping it from reaching its full potential.

Circuit scaling is starting to hit a wall as the laws of physics clash with exponential increases in the volume of data, forcing chipmakers to take a much closer look at silicon photonics as a way of moving data from where it is collected to where it is processed and stored.

The laws of physics are immutable. Put simply, there are limits to how fast an electron can travel through copper. The speed of an electron, while fast on a macroscopic scale, encounters significant resistance as pathways shrink, leading to heat generation and power inefficiencies. In contrast, silicon photonics circumvents these electrical limitations by harnessing the swiftness of photons, which travel at the speed of light and are not bound by the resistive properties of materials like copper. Unlike electrons, photons do not generate significant heat, can carry more data due to their higher frequency, and suffer from less signal degradation.

Page 40 of 327First3738394041424344Last