Menu

Blog

Archive for the ‘quantum physics’ category: Page 130

Feb 14, 2024

Scientists make Breakthrough in Quantum Materials Research

Posted by in categories: computing, quantum physics

The advance will allow researchers to transform everyday materials into conductors for use in quantum computers. Researchers at the University of California, Irvine and Los Alamos National Laboratory, publishing in the latest issue of Nature Communications, describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.

“The materials we made are substances that exhibit unique electrical or quantum properties because of their specific atomic shapes or structures,” said Luis A. Jauregui, professor of physics & astronomy at UCI and lead author of the new paper.

“Imagine if we could transform glass, typically considered an insulating material, and convert it into efficient conductors akin to copper. That’s what we’ve done.”

Feb 13, 2024

Researchers solve a foundational problem in transmitting quantum information

Posted by in categories: computing, nanotechnology, quantum physics

Future quantum electronics will differ substantially from conventional electronics. Whereas memory in the latter is stored as binary digits, the former is stored as qubits, which can take many forms, such as entrapped electrons in nanostructures known as quantum dots. However, challenges in transmitting this information to anything further than the adjacent quantum dot have limited qubit design.

Now, in a study recently published in Physical Review Letters, researchers from the Institute of Industrial Science at the University of Tokyo are solving this problem, They developed a new technology for transmitting quantum information over perhaps tens to a hundred micrometers. This advance could improve the functionality of upcoming .

How can researchers transmit quantum information, from one quantum dot to another, on the same quantum computer chip? One way might be to convert electron (matter) information into light (electromagnetic wave) information—by generating light–matter hybrid states.

Feb 13, 2024

Time and Quantum Mechanics SOLVED? | Lee Smolin

Posted by in categories: biological, mathematics, quantum physics, space

Lee Smolin joins TOE to discuss his work in theoretical physics, the dynamic nature of the laws of physics and the concept of time.

TIMESTAMPS:
00:00:00 — Intro.
00:04:13 — Doubly Special Relativity and Violation of Lorentz Invariance.
00:09:15 — The Concept of Thick Time.
00:19:11 — Duality Between String Theory and Loop Quantum Gravity.
00:23:50 — Condensed Matter Theory.
00:28:35 — Approximating by a Continuum and Discrete Sets.
00:34:11 — Misapprehensions about Loop Quantum Gravity.
00:38:43 — Defining Complexity and the View of the Universe by One Observer.
00:43:52 — Causal Energetic: The Relationship Between Varieties and Kinetic Energy.
00:48:38 — Varying Parameters in the Universe.
00:53:35 — The Bomes Interpretation of Quantum Mechanics.
00:58:30 — Causality and Relativity.
01:03:15 — Different Styles in Mathematics and Chess.
01:07:55 — The Fundamental Questions in Biology.
01:12:49 — Marrying Outside Your Field.
01:18:04 — Discussion on Authors and Novels.
01:23:35 — Conversations with Fire Robin.
01:28:39 — Being Sincere and Ambitious.
01:33:39 — A Visit from BJ
01:38:34 — Outro.

Continue reading “Time and Quantum Mechanics SOLVED? | Lee Smolin” »

Feb 13, 2024

Beyond Classical Physics: Scientists Discover New State of Matter With Chiral Properties

Posted by in categories: materials, quantum physics

An international research group has identified a novel state of matter, characterized by the presence of a quantum phenomenon known as chiral current.

These currents are generated on an atomic scale by a cooperative movement of electrons, unlike conventional magnetic materials whose properties originate from the quantum characteristic of an electron known as spin and their ordering in the crystal.

Feb 12, 2024

A multi-ensemble atomic clock enhanced using quantum computing tools

Posted by in categories: computing, particle physics, quantum physics

Atomic clocks are a class of clocks that leverage resonance frequencies of atoms to keep time with high precision. While these clocks have become increasingly advanced and accurate over the years, existing versions might not best utilize the resources they rely on to keep time.

Researchers at the California Institute of Technology recently explored the possibility of using quantum computing techniques to further improve the performance of . Their paper, published in Nature Physics, introduces a new scheme that enables the simultaneous use of multiple atomic clocks to keep time with even greater precision.

“Atomic clocks are decades old, but their performance improves every year,” Adam Shaw, co-author of the paper, told Phys.org.

Feb 12, 2024

Researchers demonstrate multi-photon state transfer between remote superconducting nodes

Posted by in categories: computing, quantum physics

Devices that exhibit electrical resonance, have a nominally infinite number of quantum levels.


Over the past few decades, quantum physicists and engineers have been trying to develop new, reliable quantum communication systems. These systems could ultimately serve as a testbed to evaluate and advance communication protocols.

Researchers at the University of Chicago recently introduced a new quantum communication testbed with remote superconducting nodes and demonstrated bidirectional multiphoton communication on this testbed. Their paper, published in Physical Review Letters, could open a new route towards realizing the efficient communication of complex quantum states in superconducting circuits.

Continue reading “Researchers demonstrate multi-photon state transfer between remote superconducting nodes” »

Feb 11, 2024

It’s About Time Crystals: Research Team Uses Time Crystals as Quantum Computer Controls

Posted by in categories: computing, quantum physics

GHZ states are crucial for pushing the boundaries of quantum physics and enhancing quantum computing and communication technologies. However, they become increasingly unstable as more qubits are entangled, with past experiments demonstrating the challenges of preserving their unique properties amidst minor disturbances. By employing a discrete time crystal, the team was able to construct a “safe house” to protect the GHZ state, achieving a less fragile configuration of 36 qubits, compared to the previously unstable larger state that included up to 60 qubits.

The application of microwave pulses to the qubits not only induced their quantum properties to oscillate and form a time crystal but also minimized disturbances that would typically disrupt the GHZ state. This could mark the first practical use of a discrete time crystal, according to Biao Huang, Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences.

Feb 10, 2024

Quantum computers can still be beaten by traditional PCs with new method

Posted by in categories: computing, information science, quantum physics

Classical computers can sometimes outperform quantum computers thanks to new algorithms, challenging the idea that quantum always prevails.


NYU researchers have developed a new method that allows classical computers to perform certain tasks faster and more efficiently than quantum computers.

Feb 10, 2024

First-ever images of heat ‘sloshing’ like sound waves captured by MIT in a superfluid

Posted by in categories: particle physics, quantum physics, space

The researchers applied the higher resonant radio frequency, which prompted any normal, “hot” fermions in the liquid to ring in response. The researchers then could zero in on the resonating fermions and track them over time to create “movies” that revealed heat’s pure motion — a sloshing back and forth, similar to sound waves.

“For the first time, we can take pictures of this substance as we cool it through the critical temperature of superfluidity, and directly see how it transitions from being a normal fluid, where heat equilibrates boringly, to a superfluid where heat sloshes back and forth,” Zwierlein says.

The experiments mark the first time scientists have been able to image second sound directly and the pure motion of heat in a superfluid quantum gas. The researchers plan to extend their work to map heat’s behavior more precisely in other ultracold gases. Then, they say their findings can be scaled up to predict how heat flows in other strongly interacting materials, such as high-temperature superconductors and neutron stars.

Feb 10, 2024

Beyond the Visible Universe: New Research Reveals How Gravity Influences the Quantum Realm

Posted by in categories: particle physics, quantum physics

Nuclear physicists have discovered gravity’s profound influence on the quantum scale, revealing the strong force’s distribution within protons for the first time. This groundbreaking research, combining historical theoretical insights with modern experimental data, offers unprecedented understanding of the proton’s internal dynamics and sets the stage for future discoveries in nuclear science.

Gravity’s influence is unmistakably evident throughout the observable universe. Its effects are observed in the synchronized orbits of moons around planets, in comets that deviate from their paths due to the gravitational pull of large stars, and in the majestic spirals of enormous galaxies. These magnificent phenomena highlight the role of gravity on the grandest scales of matter. Meanwhile, nuclear physicists are uncovering the significant contributions of gravity at the very smallest scales of matter.

New research conducted by nuclear physicists at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility is using a method that connects theories of gravitation to interactions among the smallest particles of matter to reveal new details at this smaller scale. The research has now revealed, for the first time, a snapshot of the distribution of the strong force inside the proton. This snapshot details the shear stress the force may exert on the quark particles that make up the proton. The result was recently published in Reviews of Modern Physics.