Toggle light / dark theme

For the better part of a century, the quantum objects known as quasiparticles have been all dressed up with nowhere to go. But that may change, now that a Yale-led team of physicists has shown it is possible to exert a greater level of control over at least one type of quasiparticle.

The discovery upends decades of fundamental science and may have wide applications for quantum-related research in the years ahead.

A is an “emergent” quantum object—a central, core particle surrounded by other particles that, together, demonstrate properties not found in each individual component. Quasiparticles have become the central conceptual picture by which scientists try to understand interacting quantum systems, including those that may be used in computing, sensors, and other devices.

Teleology is the idea that some processes in nature are directed toward a goal or an end. Today, it is commonly asserted that teleology is a remnant of antiquated ways of thinking about causation, and that it is not compatible with modern science, because it is fundamentally untestable.

In my opinion, such claims fail to take modern physics into account. Quantum theory involves a complex notion of causation, and it can naturally incorporate final conditions. However, to work with final conditions that are not imposed by external agents, we need to move into the realm of quantum cosmology, in which the whole universe is treated as a quantum system.

With this issue in mind, I studied final conditions in quantum cosmology. I found that cosmologies with such conditions generally predict a universe with accelerated expansion. Cosmic acceleration is a well-established fact, and also one of the most puzzling features of modern cosmology.

Research teams from USTC have realized a high-performance single-photon source with an efficiency beyond the scalable linear optical quantum computing loss tolerance threshold for the first time. Led by Prof. Pan Jianwei, Lu Chaoyang and Hu Yongheng, the study was published in Nature Photonics on February 28.

Photons, as important carriers for , have the advantages of fast speed and strong resistance to environmental interference. However, for scalable linear optical quantum computing to be feasible, apart from the challenges like being easily lost, the efficiency of a source must exceed the tricky threshold of 2/3. Previous studies had never broken through this threshold, a key obstacle restricting the development of optical quantum computing.

To overcome this challenge, the research teams have developed a tunable open optical microcavity, achieving precise coupling of quantum dots and microcavities in both and spatial positioning. The microcavity solved the detuning problem of traditional fixed microcavities.

Perhaps the most profound insight to emerge from this uncanny mirror is that understanding itself may be less mysterious and more mechanical than we have traditionally believed. The capabilities we associate with mind — pattern recognition, contextual awareness, reasoning, metacognition — appear increasingly replicable through purely algorithmic means. This suggests that consciousness, rather than being a prerequisite for understanding, may be a distinct phenomenon that typically accompanies understanding in biological systems but is not necessary for it.

At the same time, the possibility of quantum effects in neural processing reminds us that the mechanistic view of mind may be incomplete. If quantum retrocausality plays a role in consciousness, then our subjective experience may be neither a simple product of neural processing nor an epiphenomenal observer, but an integral part of a temporally complex causal system that escapes simple deterministic description.

What emerges from this consideration is not a definitive conclusion about the nature of mind but a productive uncertainty — an invitation to reconsider our assumptions about what constitutes understanding, agency, and selfhood. AI systems function as conceptual tools that allow us to explore these questions in new ways, challenging us to develop more sophisticated frameworks for understanding both artificial and human cognition.

Researchers have pulled off a quantum feat that defies traditional expectations—they’ve created Schrödinger cat states not from ultra-cold ground states, but from warm, thermally excited ones.

Using a superconducting qubit setup, the team demonstrated that quantum superpositions can exist even at higher temperatures, overturning the long-held belief that heat destroys quantum effects. This breakthrough not only validates Schrödinger’s original “hot cat” concept but also paves the way for more practical and accessible quantum technologies.

Schrödinger’s cat and hot quantum states.

What if the key to the universe was discovered over a century ago—and then forgotten?

In the late 19th century, a young math prodigy named William Clifford proposed a radical idea: that reality itself is woven from the same fabric as the mind. Long before Einstein, long before quantum theory, Clifford envisioned a world where matter, consciousness, and geometry are one.

His ideas were largely overlooked, seen as too speculative for the science of his time. Today, they look like the missing blueprint for a true Theory of Everything.

Is Clifford’s path one that science is only now catching up to?

Based on the original research by idb.kniganews “Clifford’s Path”

[ Subscribe ] and turn on notifications [ 🔔 ] so you don’t miss any videos.

Quantum computers have the potential to solve certain problems far more efficiently than classical computers. In a recent development, researchers have designed a quantum algorithm to simulate systems of coupled masses and springs, known as coupled oscillators. These systems are fundamental in modeling a wide range of physical phenomena, from molecules to mechanical structures like bridges.

To simulate these systems, the researchers first translated the behavior of the coupled oscillators into a form of the Schrödinger equation, which describes how the quantum state of a system evolves over time. They then used advanced Hamiltonian simulation techniques to model the system on a quantum computer.

Hamiltonian methods provide a framework for understanding how physical systems evolve, connecting principles of classical mechanics with those of quantum mechanics. By leveraging these techniques, the researchers were able to represent the dynamics of N coupled oscillators using only about log(N) quantum bits (qubits), a significant reduction compared to the resources required by classical simulations.

The Gefion AI Supercomputer (GAIS) project, which delivers Denmark’s first artificial intelligence (AI) turbo-charged supercomputer, has positioned Denmark as the most advanced of the Nordic region’s quantum computing investing nations.

It also serves to accelerate the use of AI to drive innovation across Denmark’s business and industrial sectors.

Built on the Nvidia DGX SuperPOD AI supercomputer, GAIS is powered by 1,528 Nvidia H100 Tensor Core graphics processing units (GPUs) and interconnected using Nvidia Quantum-2 InfiniBand networking.