Menu

Blog

Archive for the ‘quantum physics’ category: Page 170

Feb 8, 2024

Adiabatic Cooper pair splitter

Posted by in categories: materials, quantum physics

Cooper-Pair Splitting on Demand.

A proposed device can repeatedly grab pairs of electrons from a superconductor and separate them while preserving their entangled state.


By adiabatically changing the energy levels of two quantum dots, theoreticians predict that it should be possible to control the splitting of Cooper pairs from a superconductor. Such an adiabatic Cooper pair splitter could serve as an on-demand source of entangled electrons in future solid-state quantum technologies.

Feb 8, 2024

Physicists Unlock Quantum Immortality With Revolutionary Time Crystal

Posted by in category: quantum physics

Researchers have successfully extended the lifespan of time crystals, confirming a theoretical concept proposed by Frank Wilczek. This marks a significant step forward in quantum physics.

A team from TU Dortmund University recently succeeded in producing a highly durable time crystal that lived millions of times longer than could be shown in previous experiments. By doing so, they have corroborated an extremely interesting phenomenon that Nobel Prize laureate Frank Wilczek postulated around ten years ago and which had already found its way into science fiction movies. The results have now been published in Nature Physics.

Groundbreaking achievement in time crystal research.

Feb 8, 2024

Quantum materials: A new state of matter with chiral properties

Posted by in categories: biotech/medical, quantum physics

An international research group has discovered a new state of matter characterized by the existence of a quantum phenomenon called chiral current. These currents are generated on an atomic scale by a cooperative movement of electrons, unlike conventional magnetic materials whose properties originate from the quantum characteristic of an electron known as spin and their ordering in the crystal.

Chirality is a property of extreme importance in science, for example, it is fundamental also to understand DNA. In the discovered, the chirality of the currents was detected by studying the interaction between light and matter, in which a suitably polarized photon can emit an electron from the surface of the material with a well-defined spin state.

The discovery, published in Nature, significantly enriches our knowledge of quantum materials in the search for chiral quantum phases and on the phenomena that occur at the surface of materials.

Feb 8, 2024

Unlocking Quantum Superconductivity Mysteries With Ultracold Fermions

Posted by in categories: particle physics, quantum physics

Researchers have made a landmark discovery in quantum physics by observing and quantitatively characterizing the many-body pairing pseudogap in unitary Fermi gases, a topic of debate for nearly two decades. This finding not only resolves long-standing questions about the nature of the pseudogap in these gases but also suggests a potential link to the pseudogap observed in high-temperature superconductors. Credit: SciTechDaily.com.

Researchers have conclusively observed the many-body pairing pseudogap in unitary Fermi gases, advancing our understanding of superconductivity mechanisms.

A research team led by Professors Jianwei Pan, Xingcan Yao, and Yu’ao Chen from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences, has for the first time observed and quantitatively characterized the many-body pairing pseudogap in unitary Fermi gases.

Feb 8, 2024

Quantum Photonics Leap: Revolutionary Nanocavities Redefine Light Confinement

Posted by in category: quantum physics

Dr. Hanan Herzig Sheinfux, from Bar-Ilan University: “What started as a chance discovery, may well open the way to new quantum applications, pushing the boundaries of what we thought was possible.”

In a significant leap forward for quantum nanophotonics, a team of European and Israeli physicists, introduces a new type of polaritonic cavities and redefines the limits of light confinement. This pioneering work, detailed in a study published today (February 6) in Nature Materials, demonstrates an unconventional method to confine photons, overcoming the traditional limitations in nanophotonics.

Physicists have long been seeking ways to force photons into increasingly small volumes. The natural length scale of the photon is the wavelength and when a photon is forced into a cavity much smaller than the wavelength, it effectively becomes more “concentrated.”

Feb 7, 2024

2054, Part III: The Singularity

Posted by in categories: biological, quantum physics, robotics/AI, singularity

“We’d witness advances like mind-uploading,” B.T. said, and described the process by which the knowledge, analytic skills, intelligence, and personality of a person could be uploaded to a computer chip. “Once uploaded, that chip could be fused with a quantum computer that couples biological with artificial intelligence. If you did this, you’d create a human mind that has a level of computational, predictive, analytic, and psychic skill incomprehensibly higher than any existing human mind. You’d have the mind of God. That online intelligence could then create real effects in the physical world. God’s mind is one thing, but what makes God God is that He cometh to earth —”

When B.T. said earth, he made a sweeping gesture, like a faux preacher, and in his excitement, he knocked over Lily’s glass of wine. A waiter promptly appeared with a handful of napkins, sopping up the mess. B.T. waited for the waiter to leave.

“Don’t give me that look.”

Feb 7, 2024

Research team takes a fundamental step toward a functioning quantum internet

Posted by in categories: computing, internet, mathematics, quantum physics

Hong-Ou-Mandel interference of single-#photon-level pulses stored in independent room-temperature #quantum #memories Quantum #repeater #networks require independent absorptive quantum memories capable of #storing and #retrieving indistinguishable photons to perform high-repetition entanglement…


Research with quantum computing and quantum networks is taking place around the world in the hopes of developing a quantum internet in the future. A quantum internet would be a network of quantum computers, sensors, and communication devices that will create, process, and transmit quantum states and entanglement and is anticipated to enhance society’s internet system and provide certain services and securities that the current internet does not have.

A team of Stony Brook University physicists and their collaborators have taken a significant step toward the building of a testbed by demonstrating a foundational quantum network measurement that employs room-temperature . Their findings are described in a paper published in npj Quantum Information.

Continue reading “Research team takes a fundamental step toward a functioning quantum internet” »

Feb 6, 2024

IBM and IonQ Researchers Design Classical Algorithm to Tackle Recent Harvard-Led Study’s Computational Task

Posted by in categories: computing, information science, quantum physics

Despite the Harvard 48 logical #qubits paper is perhaps the biggest leap in #quantum technologies, still the final circuit is classically simulable.


Politics makes strange bedfellows, apparently so does quantum benchmarking.

In a surprising development, IBM Quantum and IonQ researchers teamed up to reveal an alternative classical simulation algorithm for an impressive error correction study conducted by a Harvard and QuEra team and published recently in Nature. IBM is a leader in superconducting quantum computers, while IonQ is noted as a pioneer in trapped ion devices.

Continue reading “IBM and IonQ Researchers Design Classical Algorithm to Tackle Recent Harvard-Led Study’s Computational Task” »

Feb 6, 2024

Breaking boundaries in quantum photonics: New nanocavities unlock new frontiers in light confinement

Posted by in categories: materials, quantum physics

In a significant leap forward for quantum nanophotonics, a team of European and Israeli physicists has introduced a new type of polaritonic cavities and redefined the limits of light confinement. This pioneering work, detailed in a study published in Nature Materials, demonstrates an unconventional method to confine photons, overcoming the traditional limitations in nanophotonics.

Physicists have long been seeking ways to force photons into increasingly small volumes. The natural length scale of the is the wavelength and when a photon is forced into a cavity much smaller than the wavelength, it effectively becomes more “concentrated.” This concentration enhances interactions with electrons, amplifying quantum processes within the cavity.

However, despite significant success in confining light into deep subwavelength volumes, the effect of dissipation (optical absorption) remains a major obstacle. Photons in nanocavities are absorbed very quickly, much faster than the wavelength, and this dissipation limits the applicability of nanocavities to some of the most exciting quantum applications.

Feb 6, 2024

QuEra to build 10,000 qubits error-corrected quantum computer by 2026

Posted by in categories: computing, quantum physics

QuEra aims to unleash a new era of innovation and discovery.