Menu

Blog

Archive for the ‘quantum physics’ category: Page 182

Nov 29, 2023

Navigating advanced technology transitions: using lessons from nanotechnology

Posted by in categories: biotech/medical, nanotechnology, quantum physics, robotics/AI

As researchers, developers, policymakers and others grapple with navigating socially beneficial advanced technology transitions — especially those associated with artificial intelligence, DNA-based technologies, and quantum technologies — there are valuable lessons to be drawn from nanotechnology. These lessons underscore an urgent need to foster collaboration, engagement and partnerships across disciplines and sectors, together with bringing together people, communities, and organizations with diverse expertise, as they work together to realize the long-term benefits of transformative technologies.

Nov 29, 2023

Physicists find ultimate limit for how accurate clocks can be

Posted by in categories: computing, quantum physics

A fundamental trade-off between the resolution of a clock and its accuracy could have important implications for quantum computers, which must measure short timescales accurately.

By Alex Wilkins

Nov 29, 2023

IonQ Named to Fast Company’s Third Annual List of the Next Big Things in Tech

Posted by in categories: business, quantum physics, robotics/AI, security

IonQ earns spot in the prestigious list of 119 innovative companies for innovation in quantum computing

COLLEGE PARK, Md., November 28, 2023 —(BUSINESS WIRE)— IonQ (NYSE: IONQ), an industry leader in quantum computing, today announced that it has been named to Fast Company’s third annual Next Big Things in Tech list, honoring technology breakthroughs that promise to shape the future of industries—from healthcare and security to artificial intelligence and data. This is IonQ’s first time appearing on the list.

“This recognition is not only a tremendous honor but a testament to the transformative impact and potential of our technology,” said Peter Chapman, President and CEO of IonQ. “IonQ is committed to advancing quantum computing capabilities to drive technological breakthroughs and solve complex business problems across industries. This award fuels our drive to continue pushing boundaries and breaking barriers.”

Nov 29, 2023

Analyst Panel Says Take the Quantum Computing Plunge Now…

Posted by in categories: quantum physics, robotics/AI

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this year.

Without doubt, the quantum computing landscape remains murky. Yet in the past ~5 years virtually every aspect of quantum computing has raced forward. At least one 1000-plus-qubit system is edging towards user access now and another is expected by year-end. There’s been a proliferation of software offerings up and down the “quantum stack” though it’s hardly complete. Most promising, what were a few POC use-case explorations has mushroomed into very many efforts across many sectors.

What are we waiting for? Against the backdrop of astonishing progress are also very hard technical problems. Error correction/mitigation tops the list. Effective quantum networking is another. Polished applications. Too many qubit types to choose from (at least for now.) Scale matters – it’s expected that millions of qubits may be needed for practical quantum computing These aren’t trivial challenges. Why bother?

Nov 29, 2023

Investigating and fine-tuning the properties of ‘magic’ graphene

Posted by in categories: energy, quantum physics

Recent advances in the development of devices made of 2D materials are paving the way for new technological capabilities, especially in the field of quantum technology. So far, however, little research has been carried out into energy losses in strongly interacting systems.

With this in mind, the team led by Professor Ernst Meyer from the Department of Physics at the University of Basel used an in pendulum mode to investigate a device in greater detail. For this, the researchers utilized a two-layer graphene, fabricated by colleagues at LMU Munich, in which the two layers were twisted by 1.08°

When stacked and twisted relative to one another, the two layers of graphene produce “moiré” superstructures, and the material acquires new properties. For example, when the two layers are twisted by the so-called magic angle of 1.08°, graphene becomes a superconductor at very low temperatures, conducting electricity with almost no energy dissipation.

Nov 28, 2023

Finally! A Fun Way to Learn Quantum Computing with QCTRL’s Black Opal

Posted by in categories: computing, education, quantum physics

Learn about quantum computing with Q-CTRL’s Black Opal!

Today, I’m diving into the interactive platform of Q-CTRL’s Black Opal to simplify quantum concepts and demonstrate quantum computing applications. This video is perfect for both beginners curious about quantum computing and seasoned professionals seeking looking for a broad overview of quantum computing applications.

Continue reading “Finally! A Fun Way to Learn Quantum Computing with QCTRL’s Black Opal” »

Nov 28, 2023

Why mathematical truths exist with or without minds to consider them

Posted by in categories: mathematics, quantum physics

What can a quantum information theorist say about the certainty of arithmetic and the universality of mathematical truth?

Nov 27, 2023

‘First Ever’ Experiments to Measure Theoretical ‘Quantum Flickering’ in an Empty Vacuum Slated for 2024

Posted by in categories: particle physics, quantum physics

German researchers hoping to be the first to successfully measure quantum flickering directly in a completely empty vacuum are setting their sights on 2024.

If successful, the first-of-their-kind experiments are expected to either confirm the existence of quantum energy in the vacuum, a core concept of quantum electrodynamics (QED), or potentially result in the discovery of previously unknown laws of nature.

Quantum Flickering, Ghost Particles, and Energy in the Vacuum.

Nov 27, 2023

Researchers achieve zero-knowledge proof based on device-independent quantum random number beacon

Posted by in categories: blockchains, encryption, information science, quantum physics, security

Zero-knowledge proof (ZKP) is a cryptographic tool that allows for the verification of validity between mutually untrusted parties without disclosing additional information. Non-interactive zero-knowledge proof (NIZKP) is a variant of ZKP with the feature of not requiring multiple information exchanges. Therefore, NIZKP is widely used in the fields of digital signature, blockchain, and identity authentication.

Since it is difficult to implement a true random number generator, deterministic pseudorandom number algorithms are often used as a substitute. However, this method has potential security vulnerabilities. Therefore, how to obtain true random numbers has become the key to improving the security of NIZKP.

In a study published in PNAS, a research team led by Prof. Pan Jianwei and Prof. Zhang Qiang from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences, and the collaborators, realized a set of random number beacon public services with device-independent quantum as entropy sources and post-quantum cryptography as identity authentication.

Nov 26, 2023

Quantum Advantage: A Physicist Explains The Future of Computers

Posted by in categories: computing, encryption, information science, quantum physics

Quantum advantage is the milestone the field of quantum computing is fervently working toward, where a quantum computer can solve problems that are beyond the reach of the most powerful non-quantum, or classical, computers.

Quantum refers to the scale of atoms and molecules where the laws of physics as we experience them break down and a different, counterintuitive set of laws apply. Quantum computers take advantage of these strange behaviors to solve problems.

Continue reading “Quantum Advantage: A Physicist Explains The Future of Computers” »