Menu

Blog

Archive for the ‘quantum physics’ category: Page 237

Aug 18, 2023

Why Many Researchers Now See the Brain as a Quantum System

Posted by in categories: neuroscience, quantum physics

😗😁 Year 2022


Quantum processes are helpful to know about when we hear a gimcrack new theory that dismisses or explains away human consciousness. We know it can’t just be that simple.

Continue reading “Why Many Researchers Now See the Brain as a Quantum System” »

Aug 17, 2023

Researchers attach electrodes to individual atomically precise graphene nanoribbons

Posted by in categories: computing, finance, quantum physics

Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers from Empa and ETH Zurich, in collaboration with partners from Peking University, the University of Warwick and the Max Planck Institute for Polymer Research, have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.

Quantum technology is promising, but also perplexing. In the coming decades, it is expected to provide us with various technological breakthroughs: smaller and more precise sensors, highly secure communication networks, and powerful computers that can help develop new drugs and materials, control financial markets, and predict the weather much faster than current computing technology ever could.

To achieve this, we need so-called quantum materials: substances that exhibit pronounced quantum . One such material is . This two-dimensional structural form of carbon has unusual physical properties, such as extraordinarily high tensile strength, thermal and electrical conductivity—as well as certain . Restricting the already two-dimensional material even further, for instance, by giving it a ribbon-like shape, gives rise to a range of controllable quantum effects.

Aug 17, 2023

Sean Carroll | The Many Worlds Interpretation & Emergent Spacetime | The Cartesian Cafe w Tim Nguyen

Posted by in categories: cosmology, mathematics, quantum physics

Sean Carroll is a theoretical physicist and philosopher who specializes in quantum mechanics, cosmology, and the philosophy of science. He is the Homewood Professor of Natural Philosophy at Johns Hopkins University and an external professor at the Sante Fe Institute. Sean has contributed prolifically to the public understanding of science through a variety of mediums: as an author of several physics books including Something Deeply Hidden and The Biggest Ideas in the Universe, as a public speaker and debater on a wide variety of scientific and philosophical subjects, and also as a host of his podcast Mindscape which covers topics spanning science, society, philosophy, culture, and the arts.

#physics #quantum #philosophy #mathematics.

Continue reading “Sean Carroll | The Many Worlds Interpretation & Emergent Spacetime | The Cartesian Cafe w Tim Nguyen” »

Aug 17, 2023

Research team simulates super diffusion on a quantum computer

Posted by in categories: computing, particle physics, quantum physics

Trinity’s quantum physicists in collaboration with IBM Dublin have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer.

This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.

Continue reading “Research team simulates super diffusion on a quantum computer” »

Aug 17, 2023

Study discovers pairing of electrons in artificial atoms, a quantum state predicted more than 50 years ago

Posted by in categories: particle physics, quantum physics

Researchers from the Department of Physics at UniversitÀt Hamburg, observed a quantum state that was theoretically predicted more than 50 years ago by Japanese theoreticians but so far eluded detection. By tailoring an artificial atom on the surface of a superconductor, the researchers succeeded in pairing the electrons of the so-called quantum dot, thereby inducing the smallest possible version of a superconductor. The work appears in the journal Nature.

Usually, electrons repel each other due to their negative charge. This phenomenon has a huge impact on many materials properties such as the electrical resistance. The situation changes drastically if the electrons are “glued” together to pairs thereby becoming bosons. Bosonic pairs do not avoid each other like single electrons, but many of them can reside at the very same location or do the very same motion.

One of the most intriguing properties of a material with such electron pairs is superconductivity, the possibility to let an electrical current flow through the material without any . For many years, superconductivity has found many important technological applications, including imaging or highly sensitive detectors for magnetic fields.

Aug 17, 2023

Scientists trap light inside a magnet

Posted by in categories: materials, quantum physics

A new study led by Vinod M. Menon and his group at the City College of New York shows that trapping light inside magnetic materials may dramatically enhance their intrinsic properties. Strong optical responses of magnets are important for the development of magnetic lasers and magneto-optical memory devices, as well as for emerging quantum transduction applications.

In their new article in Nature, Menon and his team report the properties of a layered magnet that hosts strongly bound excitons—quasiparticles with particularly strong optical interactions. Because of that, the material is capable of trapping light—all by itself.

As their experiments show, the optical responses of this material to magnetic phenomena are orders of magnitude stronger than those in typical magnets. “Since the light bounces back and forth inside the magnet, interactions are genuinely enhanced,” said Dr. Florian Dirnberger, the lead-author of the study.

Aug 17, 2023

Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks

Posted by in categories: electronics, quantum physics

Spin-based sensors have attracted attention due to their high sensitivities. Here authors present a fullerene-based nano spin sensor for in-situ sensing of gas adsorption in porous organic frameworks, demonstrating the potential applications of molecular spin systems in quantum sensing.

Aug 17, 2023

IonQ Says Reaching #AQ 64 will be a ChatGPT Moment for Quantum Computing

Posted by in categories: computing, finance, military, particle physics, quantum physics

Not many pure-play quantum computing start-ups have dared to go public. So far, the financial markets have tended to treat the newcomers unsparingly. One exception is IonQ, who along with D-Wave and Rigetti, reported quarterly earnings last week. Buoyed by hitting key technical and financial goals, IonQ’s stock is up ~400% (year-to-date) and CEO Peter Chapman is taking an aggressive stance in the frothy quantum computing landscape where error correction – not qubit count – has increasingly taken center stage as the key challenge.

This is all occurring at a time when a wide variety of different qubit types are vying for dominance. IBM, Google, and Rigetti are betting on superconducting-based qubits. IonQ and Quantinuuum use trapped ions. Atom Computing and QuEra use neutral atoms. PsiQuantum and Xanadu rely on photonics-based qubits. Microsoft is exploring topological qubits based on the rare Marjorana particle. And more are in the works.

It’s not that the race to scale up qubit-count has ended. IBM has a 433-plus qubit device (Osprey) now and is scheduled to introduce 1100-qubit device (Condor) late this year. Several other quantum computer companies have devices in the 50–100 qubit range. IonQ’s latest QPU, Forte, has 32 qubits. The challenge they all face is that current error rates remain so high that it’s impractical to reliably run most applications on the current crop of QPUs.

Aug 17, 2023

Switching ‘spin’ on and off (and up and down) in quantum materials at room temperature

Posted by in categories: computing, particle physics, quantum physics

Researchers have found a way to control the interaction of light and quantum ‘spin’ in organic semiconductors, that works even at room temperature.

Spin is the term for the intrinsic angular momentum of electrons, which is referred to as up or down. Using the up/down spin states of electrons instead of the 0 and 1 in conventional computer logic could transform the way in which computers process information. And sensors based on quantum principles could vastly improve our abilities to measure and study the world around us.

An international team of researchers, led by the University of Cambridge, has found a way to use particles of light as a ‘switch’ that can connect and control the spin of electrons, making them behave like tiny magnets that could be used for quantum applications.

Aug 17, 2023

How Will Quantum Computers Change The World?

Posted by in categories: quantum physics, supercomputing

Quantum computers are the next step in computation. These devices can harness the peculiarities of quantum mechanics to dramatically boost the power of computers. Not even the most powerful supercomputer can compete with this approach. But to deliver on that incredible potential, the road ahead remains long.

Still, in the last few years, big steps have been taken, with simple quantum processors coming online. New breakthroughs have shown solutions to the major challenges in the discipline. The road is still long, but now we can see several opportunities along the way. For The Big Questions, IFLScience’s podcast, we spoke to Professor Winfried Hensinger, Professor of Quantum Technology at the University of Sussex and the Chief Scientific Officer for Universal Quantum, about the impact these devices will have.