Menu

Blog

Archive for the ‘quantum physics’ category: Page 251

Jul 14, 2023

Quantum drive that draws ‘limitless power’ from Sun will fly to orbit this year

Posted by in categories: energy, quantum physics, satellites

IVO Ltd. believes its new ‘Quantum Drive’ defies the laws of motion, and it aims to put it to the test by sending it to orbit on a SpaceX rocket.

US company IVO Ltd., a wireless power technology firm, is set to send an all-electric propulsion system for satellites to space for the first time in October.

Continue reading “Quantum drive that draws ‘limitless power’ from Sun will fly to orbit this year” »

Jul 14, 2023

Fractional quantum Hall state appears in ultracold atoms

Posted by in categories: particle physics, quantum physics

Physicists at Harvard University in the US have created a novel strongly interacting quantum liquid known as a Laughlin state in a gas of ultracold atoms for the first time. The state, which is an example of a fractional quantum Hall (FQH) state, had previously been seen in condensed-matter systems and in photons, but observations in atoms had been elusive due to stringent experimental requirements. Because atomic systems are simpler than their condensed-matter counterparts, the result could lead to fresh insights into fundamental physics.

“Some of the most intriguing phenomena in condensed-matter physics emerge when you confine electrons in two dimensions and apply a strong magnetic field,” explains Julian Léonard, a postdoctoral researcher in the Rubidium Lab at Harvard and the lead author of a paper in Nature on the new work. “For example, the particles can behave collectively as if they have a charge that is only a fraction of the elementary charge – something that does not occur anywhere else in nature and is even ruled out by the Standard Model for all fundamental particles.”

The way in which such fractional charges arise is still not fully understood because it is difficult to study solid-state systems at an atomic scale. This is why it is so desirable to study the behaviour of FQHs in synthetic quantum systems such as cold atoms, which act as quantum simulators for more complex condensed-matter phenomena.

Jul 14, 2023

New superconductors can be built atom by atom, researchers show

Posted by in categories: computing, particle physics, quantum physics

The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers at the University of Zurich have now successfully designed superconductors one atom at a time, creating new states of matter.

What will the computer of the future look like? How will it work? The search for answers to these questions is a major driver of basic physical research. There are several possible scenarios, ranging from the further development of classical electronics to neuromorphic computing and quantum computers.

The common element in all these approaches is that they are based on novel physical effects, some of which have so far only been predicted in theory. Researchers go to great lengths and use state-of-the-art equipment in their quest for new quantum materials that will enable them to create such effects. But what if there are no suitable materials that occur naturally?

Jul 13, 2023

Superconducting-nanowire Single-photon Camera with 400,000 Pixels Will Explore Brain cells, space

Posted by in categories: biotech/medical, nanotechnology, neuroscience, quantum physics

A team at the National Institute of Standards and Technology in Boulder, Colorado, has reported the successful implementation of a 400,000 pixel superconducting nanowire single-photon detector (SNSPD) that they say will pave the way for the development of extremely light-sensitive large-format superconducting cameras. The camera will also prove invaluable for those doing medical research, where the ability to examine organs such as the brain without disturbing tissue is critical.

Superconducting detectors operate at very low temperatures and generate a minimum of excess noise, making them ideal for testing the non-local nature of reality, investigating dark matter, mapping the early universe, and performing quantum computation and communication. Previously there were no large-scale superconducting cameras – even the largest demonstrations have never exceeded 20 thousand pixels.

This was especially true for one of the most promising detector technologies, the superconducting nanowire single-photon detector (SNSPD). These detectors have been demonstrated with system detection efficiencies of 98.0%, sub-3-ps timing jitter, sensitivity from the ultraviolet (250nm) to the mid-infrared (10um), and dark count rates below 6.2e-6 counts per second (cps), but despite more than two decades of development they have never achieved an array size larger than a kilopixel. Here, we report on the implementation and characterization of a 400,000 pixel SNSPD camera, a factor of 400 improvement over the previous state-of-the-art. The array spanned an area 4×2.5 mm with a 5x5um resolution, reached unity quantum efficiency at wavelengths of 370 nm and 635 nm, counted at a rate of 1.1e5 cps, and had a dark count rate of 1e-4 cps per detector (corresponding to 0.13 cps over the whole array).

Jul 13, 2023

Einstein’s theory of relativity reaffirmed, despite doubts from quantum physicists

Posted by in categories: quantum physics, space

One of the most basic assumptions of fundamental physics is that the different properties of mass—weight, inertia and gravitation—always remain the same in relation to each other. Without this equivalence, Einstein’s theory of relativity would be contradicted and our current physics textbooks would have to be rewritten. Although all measurements to date confirm the equivalence principle, quantum theory postulates that there should be a violation.

This inconsistency between Einstein’s gravitational theory and modern is the reason why ever more precise tests of the are particularly important. A team from the Center of Applied Space Technology and Microgravity (ZARM) at University of Bremen, in collaboration with the Institute of Geodesy (IfE) at Leibniz University Hannover, has now succeeded in proving with 100 times greater accuracy that passive gravitational mass and active gravitational mass are always equivalent—regardless of the particular composition of the respective masses.

The research was conducted within the framework of the Cluster of Excellence “QuantumFrontiers.” Today, the team published their findings as a highlights article in Physical Review Letters.

Jul 13, 2023

Quantum Breakthrough: First-Ever Entanglement of Microwave and Optical Photons

Posted by in categories: encryption, quantum physics, supercomputing

Quantum computing holds the potential to tackle complex issues in fields like material science and cryptography, problems that will remain out of reach even for the most powerful conventional supercomputers in the future. However, accomplishing this feat will likely necessitate millions of high-quality qubits, given the error correction needed.

Progress in superconducting processors advances quickly with a current qubit count in the few hundreds. The appeal of this technology lies in its swift computational speed and compatibility with microchip fabrication. However, the requirement for extremely low temperatures places a limit on the processor’s size and prevents any physical access once it is cooled down.

A modular quantum computer with multiple separately cooled processor nodes could solve this. However, single microwave photons—the particles of light that are the native information carriers between superconducting qubits within the processors—are not suitable to be sent through a room temperature environment between the processors. The world at room temperature is bustling with heat, which easily disturbs the microwave photons and their fragile quantum properties like entanglement.

Jul 13, 2023

Quantum Computers Could Be Even More Powerful With Latest Discovery

Posted by in categories: computing, quantum physics

An unusual superconducting state observed in the material uranium ditelluride (UTe2) could help overcome well-known challenges in the advancement of quantum computing.

Researchers from the Macroscopic Quantum Matter Group laboratory at University College Cork (UCC) discovered the unique properties, which allow electrons to flow freely without resistance along a kind of quantum waterslide.

Jul 13, 2023

Quantum plasmonics with dressing EM fields: Advancing the design of nanoscale integrated circuits

Posted by in categories: nanotechnology, quantum physics

Envision a realm where light can be meticulously controlled and manipulated at minuscule scales, unlocking unprecedented potentials for nanotechnology and quantum information technology. Recent breakthroughs in quantum research have propelled us closer to a reality that may be more achievable than previously realized.

In this article, we delve into the domain of surface plasmon polaritons (SPPs) and the vast possibilities they offer in revolutionizing the field of quantum optics.

Picture a serene lake on a sunny day. As you drop a small stone into the water, it sets in motion gentle ripples that traverse the surface. Now, imagine light as akin to those undulating ripples. When light encounters the interface of a metal and a dielectric material, it has the power to generate waves, much like the ripples on the lake. This phenomenon is even more intriguing because these light waves can interact with the metal’s microscopic constituents, such as electrons. Remarkably, the light waves and electrons synchronize their oscillations, giving rise to an SPP wave.

Jul 13, 2023

Novel ‘toggle-switch’ could lead to more versatile quantum processors with clearer outputs

Posted by in categories: computing, employment, quantum physics

What good is a powerful computer if you can’t read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.

The device, introduced by a team of scientists at the National Institute of Standards and Technology (NIST), includes two superconducting quantum bits, or , which are a quantum computer’s analog to the logic bits in a classical computer’s processing chip. The heart of this new strategy relies on a “toggle switch” device that connects the qubits to a circuit called a “readout resonator” that can read the output of the qubits’ calculations.

This toggle switch can be flipped into different states to adjust the strength of the connections between the qubits and the readout resonator. When toggled off, all three elements are isolated from each other. When the switch is toggled on to connect the two qubits, they can interact and perform calculations. Once the calculations are complete, the toggle switch can connect either of the qubits and the readout resonator to retrieve the results.

Jul 13, 2023

A Peek Into the Quantum Realm: MIT Physicists Generate the First Snapshots of Fermion Pairs

Posted by in categories: computing, mobile phones, particle physics, quantum physics

The images shed light on how electrons form superconducting pairs that glide through materials without friction.

When your laptop or smartphone heats up, it’s due to energy that’s lost in translation. The same goes for power lines that transmit electricity between cities. In fact, around 10 percent of the generated energy is lost in the transmission of electricity. That’s because the electrons that carry electric charge do so as free agents, bumping and grazing against other electrons as they move collectively through power cords and transmission lines. All this jostling generates friction, and, ultimately, heat.

But when electrons pair up, they can rise above the fray and glide through a material without friction. This “superconducting” behavior occurs in a range of materials, though at ultracold temperatures. If these materials can be made to superconduct closer to room temperature, they could pave the way for zero-loss devices, such as heat-free laptops and phones, and ultra-efficient power lines. But first, scientists will have to understand how electrons pair up in the first place.