Menu

Blog

Archive for the ‘quantum physics’ category: Page 257

May 21, 2023

May 15, 2023

Posted by in categories: biological, quantum physics

California NanoSystems Institute News Member News May 15, 2023 | Quantum physics proposes a new way to study biology – and the results could revolutionize our understanding of how life works.

May 21, 2023

Our Existence Always Contains Some Uncertainty. This Physics Principle Explains Why

Posted by in categories: food, quantum physics

😗


German theoretical physicist Werner Heisenberg first introduced his uncertainty principle in a 1925 paper. It’s special because it remains intact no matter how good our experimental methods get; this isn’t a lack of precision in measurement. It doesn’t matter how smart you are, or how sophisticated your equipment, is you can’t think your way past it. It’s a fact of nature.

Legendary physicist and master bongo player Richard Feynman put it like this: “The uncertainty principle ‘protects’ quantum mechanics. Heisenberg recognized that if it were possible to measure both the momentum and the position simultaneously with greater accuracy, quantum mechanics would collapse. So he proposed that must be impossible.”

Continue reading “Our Existence Always Contains Some Uncertainty. This Physics Principle Explains Why” »

May 21, 2023

University of Chicago joins global partnerships to advance quantum computing

Posted by in categories: quantum physics, supercomputing

$100 million from IBM to help develop quantum-centric supercomputer; $50 million from Google to support quantum research and workforce development.

May 21, 2023

Superconducting qubits have passed a key quantum test

Posted by in category: quantum physics

A Bell test can confirm whether two systems are truly entangled – it has now been used to confirm entanglement between qubits in a superconducting circuits.

By Leah Crane

May 21, 2023

Peeling Back Quantum Mysteries: New Tool Disentangles the Electronic States Layer-by-Layer

Posted by in categories: biotech/medical, business, engineering, law, policy, quantum physics

Researchers at the university of chicago.

Founded in 1,890, the University of Chicago (UChicago, U of C, or Chicago) is a private research university in Chicago, Illinois. Located on a 217-acre campus in Chicago’s Hyde Park neighborhood, near Lake Michigan, the school holds top-ten positions in various national and international rankings. UChicago is also well known for its professional schools: Pritzker School of Medicine, Booth School of Business, Law School, School of Social Service Administration, Harris School of Public Policy Studies, Divinity School and the Graham School of Continuing Liberal and Professional Studies, and Pritzker School of Molecular Engineering.

May 21, 2023

Experimental observation of curved light-cones in a quantum field simulator

Posted by in categories: quantum physics, space

We investigate signal propagation in a quantum field simulator of the Klein–Gordon model realized by two strongly coupled parallel one-dimensional quasi-condensates. By measuring local phononic fields after a quench, we observe the propagation of correlations along sharp light-cone fronts. If the local atomic density is inhomogeneous, these propagation fronts are curved. For sharp edges, the propagation fronts are reflected at the system’s boundaries. By extracting the space-dependent variation of the front velocity from the data, we find agreement with theoretical predictions based on curved geodesics of an inhomogeneous metric. This work extends the range of quantum simulations of nonequilibrium field dynamics in general space–time metrics.

May 20, 2023

Quantum chemistry protects against macular degeneration

Posted by in categories: chemistry, quantum physics

(Credit: Perchek Industrie/Unsplash)

Age-related macular degeneration is the leading cause of vision loss in Western countries. The condition, a deterioration of central vision, begins when droplets of lipids and proteins called lipofuscin accumulate in the retina and damage cells.

May 19, 2023

Record Precision for Hydrogen Spectroscopy Measurements

Posted by in category: quantum physics

Measurements of the “hyperfine” splitting of certain electronic levels of hydrogen have broken precision records, potentially enabling precise tests of quantum electrodynamics.

May 19, 2023

Quantum Biology Could Revolutionize Our Understanding of How Life Works

Posted by in categories: biotech/medical, chemistry, genetics, mobile phones, nanotechnology, quantum physics, wearables

In my work, I build instruments to study and control the quantum properties of small things like electrons. In the same way that electrons have mass and charge, they also have a quantum property called spin. Spin defines how the electrons interact with a magnetic field, in the same way that charge defines how electrons interact with an electric field. The quantum experiments I have been building since graduate school, and now in my own lab, aim to apply tailored magnetic fields to change the spins of particular electrons.

Research has demonstrated that many physiological processes are influenced by weak magnetic fields. These processes include stem cell development and maturation, cell proliferation rates, genetic material repair, and countless others. These physiological responses to magnetic fields are consistent with chemical reactions that depend on the spin of particular electrons within molecules. Applying a weak magnetic field to change electron spins can thus effectively control a chemical reaction’s final products, with important physiological consequences.

Currently, a lack of understanding of how such processes work at the nanoscale level prevents researchers from determining exactly what strength and frequency of magnetic fields cause specific chemical reactions in cells. Current cell phone, wearable, and miniaturization technologies are already sufficient to produce tailored, weak magnetic fields that change physiology, both for good and for bad. The missing piece of the puzzle is, hence, a “deterministic codebook” of how to map quantum causes to physiological outcomes.

May 19, 2023

Physics Breakthrough: First-Ever Measurement of a Quantum Paradox

Posted by in categories: particle physics, quantum physics

How do quantum particles exchange information? An intriguing hypothesis regarding quantum information has recently been validated through experimental verification conducted at TU Wien.

If you were to randomly pick an individual from a crowd who stands remarkably taller than the average, it’s quite likely that this person will also surpass the average weight. This is because, statistically, knowledge about one variable often gives us some insight into another.

Quantum physics takes these correlations to another level, establishing even more potent connections between disparate quantities: distinct particles or segments of a vast quantum system can “share” a specific amount of information. This intriguing theoretical premise suggests that the calculation of this “mutual information” is surprisingly not influenced by the system’s overall volume, but only by its surface.