Menu

Blog

Archive for the ‘quantum physics’ category: Page 257

Jul 19, 2023

Nonlinear feedforward enabling quantum computation

Posted by in categories: computing, internet, quantum physics

We have implemented a nonlinear quadrature measurement of \(\hat{p}+\gamma {\hat{x}}^{2}\) using the nonlinear electro-optical feedforward and non-Gaussian ancillary states. The nonlinear feedforward makes the tailored measurement classically nonlinear, while the ancillary state pushes the measurement into highly non-classical regime and determines the excess noise of the measurement. By using a non-Gaussian ancilla we have observed 10% reduction of the added noise relative to the use of vacuum ancillary state, which is consistent with the amount of nonlinear squeezing in the ancilla. Higher reduction of the noise can be realized in the near future by a better approximation of the CPS using a superposition of higher photon number states38,42. We can now create broadband squeezed state of light beyond 1 THz8,9 and can make a broadband amplitude measurement on it with 5G technology beyond 40 GHz10, as well as a broadband photon-number measurement beyond 10 GHz11. Furthermore, the nonlinear feedforward presented here can be compatible with these technologies if an application specific integrated circuit (ASIC) is developed based on the FPGA board presented here. By using such technologies we can efficiently create non-Gaussian ancillary states with large nonlinear squeezing by heralding schemes36,43 even when the success rate is very low. It is because we can repeat heralding beyond 10 GHz and can compensate for the very low success rate.

When supplied with such high-quality ancillary state, this nonlinear measurement can be directly used in the implementation of the deterministic non-Gaussian operations required in the universal quantum computation. Our experiment is a key milestone for this development as it versatilely encompasses all the necessary elements for universal manipulation of the cluster states. Furthermore, this method is extendable to multiple ancillary states case in implementation of the higher-order quantum non-Gaussianity44 and multi-mode quantum non-Gaussianity45.

Our experiment demonstrates an active, flexible, and fast nonlinear feedforward technique applicable to traveling quantum states localized in time. If the nonlinear feedforward system is combined with the cluster states13,14 and GKP states19, all operations required for large-scale fault-tolerant universal quantum computation can be implemented in the same manner. As such, we have demonstrated a key technology needed for optical quantum computing, bringing it closer to reality.

Jul 19, 2023

Here’s what quantum computing is—and how it’s going to impact the future of work, according to a software engineer

Posted by in categories: computing, health, information science, mathematics, mobile phones, particle physics, quantum physics

The digital devices that we rely on so heavily in our day-to-day and professional lives today—smartphones, tablets, laptops, fitness trackers, etc.—use traditional computational technology. Traditional computers rely on a series of mathematical equations that use electrical impulses to encode information in a binary system of 1s and 0s. This information is transmitted through quantitative measurements called “bits.”

Unlike traditional computing, quantum computing relies on the principles of quantum theory, which address principles of matter and energy on an atomic and subatomic scale. With quantum computing, equations are no longer limited to 1s and 0s, but instead can transmit information in which particles exist in both states, the 1 and the 0, at the same time.

Quantum computing measures electrons or photons. These subatomic particles are known as quantum bits, or ” qubits.” The more qubits are used in a computational exercise, the more exponentially powerful the scope of the computation can be. Quantum computing has the potential to solve equations in a matter of minutes that would take traditional computers tens of thousands of years to work out.

Jul 19, 2023

Quantum-in-the-loop: A new interface that connects power grids and quantum computers

Posted by in categories: computing, quantum physics

This interface can bridge the gap between theory and experiment by allowing researchers to conduct real-time quantum-in-the-loop experiments.

Power grid equipment can now be interfaced with quantum computers! Power grids.

But, quantum computers offer hope as they can handle a large number of computations in a short amount of time. Quantum computing research is happening at light speed, and there is a potential for their use to optimize power grids.

Continue reading “Quantum-in-the-loop: A new interface that connects power grids and quantum computers” »

Jul 19, 2023

Where quantum computing is already delivering value

Posted by in categories: computing, quantum physics

While gate model quantum computing holds immense promise for tomorrow, quantum annealing systems are solving complex optimization problems for enterprises today.

Jul 18, 2023

Shrinking Light: Nanoscale Optical Breakthrough Unlocks a World of Quantum Possibilities

Posted by in categories: nanotechnology, quantum physics

Waveguiding scheme enables highly confined subnanometer optical fields.

Researchers have pioneered a novel method for confining light to subnanometer scales. This development offers promising potential for advancements in areas such as light-matter interactions and super-resolution nanoscopy.

Advancements in Light Confinement Technology.

Jul 18, 2023

Q-CTRL’s quantum navigation uses atom vibration for dead reckoning

Posted by in categories: military, particle physics, quantum physics

Australia-based Q-CTRL has officially announced that it will partner with the Australian military and AUKUS to develop GPS-free navigation using quantum sensors.

Australian quantum technology developer Q-CTRL has now officially partnered with Australia’s Department of Defence (DoD) and, by proxy, AUKUS partners to develop quantum sensors that will deliver quantum-assured navigation capability for military platforms. The program will use Q-CTRL’s “software-ruggedized” quantum sensing technology to enhance positioning and navigation.

Continue reading “Q-CTRL’s quantum navigation uses atom vibration for dead reckoning” »

Jul 18, 2023

Preparing for a quantum leap: Researchers chart future for use of quantum computing in particle physics

Posted by in categories: computing, particle physics, quantum physics

Experts from CERN, DESY, IBM Quantum and others have published a white paper identifying activities in particle physics that could benefit from the application of quantum-computing technologies.

Last week, researchers published an important identifying activities in where burgeoning technologies could be applied. The paper, authored by experts from CERN, DESY, IBM Quantum and over 30 other organizations, is now available as a preprint on arXiv.

With quantum-computing technologies rapidly improving, the paper sets out where they could be applied within particle physics in order to help tackle computing challenges related not only to the Large Hadron Collider’s ambitious upgrade program, but also to other colliders and low-energy experiments worldwide.

Jul 18, 2023

Strategic Partnership Between IonQ And QuantumBasel Could Transform Switzerland Into A European Quantum Powerhouse

Posted by in categories: quantum physics, robotics/AI

Vice President of AI & Quantum Computing, Paul Smith-Goodson dive into the strategic partnership between IoQ and QuantumBasel.

Jul 17, 2023

Study combines quantum computing and generative AI for drug discovery

Posted by in categories: chemistry, quantum physics, robotics/AI

Science and Technology:

Hope that they find a medicine to cure aging and turn us immortal and able to live forever still during “our” lifetime.


Insilico Medicine, a clinical stage generative artificial intelligence (AI)-driven drug discovery company, today announced that it combined two rapidly developing technologies, quantum computing and generative AI, to explore lead candidate discovery in drug development and successfully demonstrated the potential advantages of quantum generative adversarial networks in generative chemistry.

Continue reading “Study combines quantum computing and generative AI for drug discovery” »

Jul 17, 2023

A solid-state quantum microscope that controls the wave functions of atomic quantum dots in silicon

Posted by in categories: computing, particle physics, quantum physics

Over the past decades, physicists and engineers have been trying to develop various technologies that leverage quantum mechanical effects, including quantum microscopes. These are microscopy tools that can be used to study the properties of quantum particles and quantum states in depth.

Researchers at Silicon Quantum Computing (SQC)/UNSW Sydney and the University of Melbourne recently created a new solid-state quantum that could be used to control and examine the wave functions of atomic qubits in silicon. This microscope, introduced in a paper published in Nature Electronics, was created combining two different techniques, known as ion implantation and atomic precision lithography.

“Qubit device operations often rely on shifting and overlapping the qubit wave functions, which relate to the spatial distribution of the electrons at play, so a comprehensive knowledge of the latter provides a unique insight into building quantum circuits efficiently,” Benoit Voisin and Sven Rogge, two researchers who carried out the study, told Phys.org.