Toggle light / dark theme

Michael Levin discusses his 2022 paper “Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds” and his 2023 paper with Joshua Bongard, “There’s Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-scale Machines.” Links to papers flagged 🚩below.

Michael Levin is a scientist at Tufts University; his lab studies anatomical and behavioral decision-making at multiple scales of biological, artificial, and hybrid systems. He works at the intersection of developmental biology, artificial life, bioengineering, synthetic morphology, and cognitive science.

❶ Polycomputing (observer-dependent)
1:59 Outlining the discussion.
3:50 My favorite comment from round 1 interview.
5:00 What is polycomputing?
8:50 An ode to Richard Feynman’s “There’s plenty of room at the bottom“
11:10 How/when was this discovered? Reductionism, causal power…
14:40 “It’s a view that steps away from prediction.“
16:20 From abstract: Polycomputing is the ability of the same substrate to simultaneously compute different things *but emphasis on the observer(s)*
17:05 What’s an example of polycomputing?
19:40 They took a different approach and actually did experiments with gene regulatory networks (GRNs)
23:18 Different observers extract different utility from the exact same system.
26:35 Spatial causal emergence graphs (determinism, degeneracy) | Erik Hoel’s micro/macro & effective information.
29:25 Inventiveness of John Conway’s Game of Life.

❷ Technological Approach to Mind Everywhere.

Isaac Newton described his theory of gravity as a force that acts instantaneously across space: a planet immediately senses the effects of another astronomical object, regardless of the separation between them. This aspect inspired Einstein to create the renowned theory of general relativity, where gravity becomes a local deformation of spacetime.

The principle of locality states that an object is directly influenced only by its surrounding environment: distant objects cannot communicate instantaneously, only what is here right now matters. However, in the past century, with the birth and development of quantum mechanics, physicists discovered that non-local phenomena not only exist but are fundamental to understanding the nature of reality.

Now, a new study from SISSA – Scuola Internazionale Superiore di Studi Avanzati, recently published in The Astrophysical Journal.

Crafting organic molecules into a bizarre kind of magnet, physicists from Aalto University and the University of Jyväskylä in Finland have created the perfect space for observing the elusive activity of an electronic state called a triplon.

Where a garden variety magnet is typically best described as having two poles surrounded by a nest of field lines, the curious construct known as a quantum magnet defies such a simple description.

As is the case any time the word ‘quantum’ appears, you can imagine a landscape where nothing is certain. Like spinning roulette wheels in a dimly lit casino, all states are a maybe until the croupier says “no more bets”.

To discover how light interacts with molecules, the first step is to follow electron dynamics, which evolve at the attosecond timescale. The dynamics of this first step have been called charge migration (CM). CM plays a fundamental role in chemical reactions and biological functions associated with light–matter interaction. For years, visualizing CM at the natural timescale of electrons has been a formidable challenge in ultrafast science due to the ultrafine spatial (angstrom) and ultrafast temporal (attosecond) resolution required.

Experimentally, the sensitive dependence of CM on and orientations has made the CM dynamics complex and difficult to trace. There are still some open questions about molecular CM that remain unclear. One of the most fundamental questions: how fast does the charge migrate in molecules? Although molecular CM has been extensively studied theoretically in the last decade by using time-dependent quantum chemistry packages, a real measurement of the CM has remained unattainable, due to the extreme challenge.

As reported in Advanced Photonics, a research team from Huazhong University of Science and Technology (HUST), in cooperation with theoretical teams from Kansas State University and University of Connecticut, recently proposed a high harmonic spectroscopy (HHS) method for measuring the CM speed in a carbon-chain molecule, butadiyne (C4H2).

More cool designs are on Amazon: https://amzn.to/3wDGy2i.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about bizarre quantum effects discovered in the last few months.
Links:
https://news.uchicago.edu/story/uchicago-scientists-observe-…laboratory.
https://www.nature.com/articles/s41567-023-02139-8
https://www.nature.com/articles/s41586-023-05727-z.
https://www.nature.com/articles/s42005-022-00881-8
#quantum #quantumphysics #quantummechanics.

0:00 Evidence for quantum superchemistry.
3:40 Solar fusion is quantum and not classical.
5:20 Quantum tunneling and microscopy.
7:00 Tunneling causes chemistry.
7:40 Tunneling affects DNA and causes mutation.

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!

Subscribe here: https://goo.gl/9FS8uF
Check out the previous episode: https://www.youtube.com/watch?v=X5lpOskKF9I
Become a Patreon!: https://www.patreon.com/ColdFusion_TV

Here it is, the bio computer. A new type of parallel computing method that could rival the infamous quantum computer at a much lower price while being more practical to boot.

Hi, welcome to ColdFusion (formally known as ColdfusTion).
Experience the cutting edge of the world around us in a fun relaxed atmosphere.

Sources:

Quantum computers, devices that perform computations by exploiting quantum mechanical phenomena, have the potential to outperform classical computers on some tasks and optimization problems. In recent years, research teams at both academic institutions and IT companies have been trying to realize this predicted better performance for specific problems, which is broadly known as “quantum advantage.”

To reliably demonstrate that a quantum computer performs better than a classical computer, one should, among other things, collect inside the computer and compare them to those collected in . Doing this, however, can sometimes be challenging, due to the distinct nature of these two types of devices.

Researchers at NIST/University of Maryland, UC Berkeley, Caltech and other institutes in the United States recently introduced and tested a new protocol that could help to reliably validate the advantage of quantum computers. This protocol, introduced in Nature Physics, relies on mid-circuit measurements and a cryptographic technique.

Teleportation year 2023 😗😁.


The long distance entanglement in finite size open Fermi–Hubbard chains, together with the end-to-end quantum teleportation are investigated. We show the peculiarity of the ground state of the Fermi–Hubbard model to support maximum long distance entanglement, which allows it to operate as a quantum resource for high fidelity long distance quantum teleportation. We determine the physical properties and conditions for creating scalable long distance entanglement and analyze its stability under the effect of the Coulomb interaction and the hopping amplitude. Furthermore, we show that the choice of the measurement basis in the protocol can drastically affect the fidelity of quantum teleportation and we argue that perfect information transfer can be attained by choosing an adequate basis reflecting the salient properties of the quantum channel, i.e. Hubbard projective measurements.

Metrological institutions around the world administer our time using atomic clocks based on the natural oscillations of atoms. These clocks, pivotal for applications like satellite navigation or data transfer, have recently been improved by using ever higher oscillation frequencies in optical atomic clocks.

Now, scientists at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences led by Christian Roos show how a particular way of creating entanglement can be used to further improve the accuracy of measurements integral to an optical atomic clock’s function. Their results have been published in the journal Nature.

Observations of are always subject to a certain statistical uncertainty. “This is due to the nature of the quantum world,” explains Johannes Franke from Christian Roos’ team. “Entanglement can help us reduce these errors.”

What happens in femtoseconds in nature can now be observed in milliseconds in the lab.

Scientists at the university of sydney.

The University of Sydney is a public research university located in Sydney, New South Wales, Australia. Founded in 1,850, it is the oldest university in Australia and is consistently ranked among the top universities in the world. The University of Sydney has a strong focus on research and offers a wide range of undergraduate and postgraduate programs across a variety of disciplines, including arts, business, engineering, law, medicine, and science.