Menu

Blog

Archive for the ‘quantum physics’ category: Page 292

Mar 4, 2023

Researchers say they can use the quantum world to reverse time

Posted by in categories: computing, quantum physics

According to reports from Spanish newspaper El País, researchers have discovered a way to speed up, slow down, and even reverse quantum time by taking advantage of unusual properties within a quantum world in specific ways. It’s a huge breakthrough, which the researchers have detailed in a series of six new papers featured in Advancing Physics.

The papers were originally published in 2018, and they detail how researchers were able to rewind time to a previous scene, as well as even skip several scenes forward. Being able to reverse and even control quantum time is a huge step forward, especially as we’ve seen increasing movements into quantum simulators.

The realm of quantum physics is a complex one, no doubt, and with analog quantum computers showing such promise at solving intense problems, it only seens fitting that research into controlling and reversing quantum time would prove so fruitful. The researchers say that the control they can acquire on the quantum world is very similar to controlling a movie.

Mar 3, 2023

A Surprising New Method for Converting Light Into Electricity

Posted by in categories: electronics, quantum physics

A team led by Boston College has devised a new quantum sensor method to image and comprehend the source of photocurrent flow in Weyl semimetals.

In a recent paper published in the journal Nature Physics.

As the name implies, Nature Physics is a peer-reviewed, scientific journal covering physics and is published by Nature Research. It was first published in October 2005 and its monthly coverage includes articles, letters, reviews, research highlights, news and views, commentaries, book reviews, and correspondence.

Mar 3, 2023

Where Are All The Alien Robots? Hart-Tipler Conjecture and What It Gets Wrong

Posted by in categories: alien life, bitcoin, cryptocurrencies, existential risks, quantum physics, robotics/AI

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3wDGy2i.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about new explanations of the Fermi paradox focusing on the Hart Tipler Conjecture that tries to disprove the existence of extraterrestrial intelligence.
Links:
https://ui.adsabs.harvard.edu/abs/1975QJRAS…16…128H/abstract.
https://arxiv.org/abs/2301.09575
Potential other resolutions of Fermi paradox:
https://www.youtube.com/watch?v=b3xro2jHevk.

https://www.youtube.com/watch?v=k_B9YP5nEWw.

https://www.youtube.com/watch?v=b3xro2jHevk.
Hawking radiation: https://youtu.be/6h6MgvBLrxk.
Penrose process: https://youtu.be/A-WIsnoX2Uw.

Continue reading “Where Are All The Alien Robots? Hart-Tipler Conjecture and What It Gets Wrong” »

Mar 3, 2023

Having Trouble Understanding Quantum Machine Learning?

Posted by in categories: information science, quantum physics, robotics/AI

Do you want to get started with Quantum Machine Learning? Have a look at Hands-On Quantum Machine Learning With Python.

This article will explain the most important parts of the Quantum Approximate Optimization Algorithm (QAOA). QAOA is a machine learning algorithm that you can use to solve combinatorial optimization problems.

Mar 3, 2023

Strange quantum event happens once every 10 billion chances

Posted by in category: quantum physics

When two forms of hydrogen smash together an unusual process called quantum tunnelling can occur. Researchers have now worked out how rarely it happens.

By Karmela Padavic-Callaghan

Mar 2, 2023

Breakthrough in Quantum Chemistry: Tunnel Effect Experimentally Observed in Molecules

Posted by in categories: chemistry, particle physics, quantum physics

While tunneling reactions are remarkably hard to predict, a group of researchers were able to experimentally observe such an effect, marking a breakthrough in the field of quantum chemistry.

Tunnel Effect

Continue reading “Breakthrough in Quantum Chemistry: Tunnel Effect Experimentally Observed in Molecules” »

Mar 1, 2023

Coming soon: The Quantum Revolution

Posted by in categories: business, computing, quantum physics, security

We’ll send you a myFT Daily Digest email rounding up the latest Tech Tonic news every morning.

In a new season of Tech Tonic, FT tech journalists Madhumita Murgia and John Thornhill investigate the race to build a quantum computer, the impact they could have on security, innovation and business, and the confounding physics of the quantum world.

Mar 1, 2023

Classiq, Microsoft Team on Quantum Computing for Academia

Posted by in categories: business, computing, education, information science, quantum physics

In an interview with EE Times, Classiq CEO Nir Minerbi said Classiq’s academic program is an essential part of its broader strategy to expand the platform’s reach and promote the quantum computing business.

“We believe that offering this program will give students the tools and knowledge they need to learn practical quantum software-development skills while also providing researchers with a streamlined means of developing advanced quantum computing algorithms capable of taking advantage of ever more powerful quantum hardware,” he said. “In addition, our program enables students and researchers to test, validate and run their quantum programs on real hardware, providing valuable real-world experience. Ultimately, we think that our academic program will have a significant impact on the quantum computing community by promoting education and research in the field—and helping to drive innovation and progress in the industry.”

Classiq and Microsoft are among the top companies developing quantum computing software. The quantum stack developed by the firms advances Microsoft’s vision for quantum programming languages, which was published in the 2020 issue of Nature.

Mar 1, 2023

Quantum chemistry: Molecules caught tunneling

Posted by in categories: chemistry, particle physics, quantum physics

Tunneling reactions in chemistry are difficult to predict. The quantum mechanically exact description of chemical reactions with more than three particles is difficult, with more than four particles it is almost impossible. Theorists simulate these reactions with classical physics and must neglect quantum effects. But where is the limit of this classical description of chemical reactions, which can only provide approximations?

Roland Wester from the Department of Ion Physics and Applied Physics at the University of Innsbruck has long wanted to explore this frontier. “It requires an experiment that allows very and can still be described quantum-mechanically,” says the experimental physicist. “The idea came to me 15 years ago in a conversation with a colleague at a conference in the U.S.,” Wester recalls. He wanted to trace the quantum mechanical tunnel effect in a very simple reaction.

Since the tunnel effect makes the reaction very unlikely and thus slow, its experimental observation was extraordinarily difficult. After several attempts, however, Wester’s team has now succeeded in doing just that for the first time, as they report in the current issue of the journal Nature.

Mar 1, 2023

Observing phononic skyrmions based on the hybrid spin of elastic waves

Posted by in categories: nanotechnology, particle physics, quantum physics

Skyrmions are extremely small with diameters in the nanoscale, and they behave as particles suited for information storage and logic technologies. In 1961, Tony Skyrme formulated a manifestation of the first topological defect to model a particle and coined it as skyrmions. Such particles with topologically stable configurations can launch a promising route toward establishing high-density magnetic and phononic (a discrete unit of quantum vibrational mechanical energy) information processing routes.

In a new report published in Science Advances, Liyun Cao and a team of researchers at the University of Lorraine CNRS, France, experimentally developed phononic skyrmions as new topological structures by using the three-dimensional (3D) hybrid spin of . The researchers observed the frequency-independent spin configurations and their progression toward the formation of ultra-broadband phononic skyrmions that could be produced on any solid structure.