Menu

Blog

Archive for the ‘quantum physics’ category: Page 308

Feb 26, 2023

New analysis method developed for quantum and nanomaterials

Posted by in categories: nanotechnology, particle physics, quantum physics

A slow-motion movie on sports television channels shows processes in hundredths of a second. By contrast, processes on the nanoscale take place in the so-called femtosecond range: For example, an electron needs only billionths of a second to orbit a hydrogen atom. Physicists around the world are using special instruments to capture such ultrafast nano-processes in films.

Researchers at Kiel University (CAU) have developed a new method for such films that is based on a different physical concept and thus allows further and more precise options for investigation. To do this, they combined an electron microscope with nanostructured metallic thin films that generate very short light pulses.

Continue reading “New analysis method developed for quantum and nanomaterials” »

Feb 26, 2023

The weirdness of quantum mechanics forces scientists to confront philosophy

Posted by in category: quantum physics

Though quantum mechanics is an incredibly successful theory, nobody knows what it means. Scientists now must confront philosophy.

Feb 25, 2023

‘We have made science fiction come true!’ Scientists prove particles in a quantum system can be rejuvenated

Posted by in categories: particle physics, quantum physics

An Austrian and Spanish team demonstrated that a process can be ‘rewound’ to restore the components of an atom to their previous state.

Feb 25, 2023

Chirping towards a quantum Ram

Posted by in category: quantum physics

Dropbox is a free service that lets you bring your photos, docs, and videos anywhere and share them easily. Never email yourself a file again!

Feb 23, 2023

Deepfreeze electronics for supercomputers—technology prepares quantum computing for industrial use

Posted by in categories: quantum physics, robotics/AI, supercomputing

Quantum computers are highly energy-efficient and extremely powerful supercomputers. But for these machines to realize their full potential in new applications like artificial intelligence or machine learning, researchers are hard at work at perfecting the underlying electronics to process their calculations. A team at Fraunhofer IZM are working on superconducting connections that measure a mere ten micrometers in thickness, moving the industry a substantial step closer to a future of commercially viable quantum computers.

With the extreme computing power they promise, quantum computers have the potential to become the for technological innovations in all areas of modern industry. By contrast with the run-of-the-mill computers of today, they do not work with bits, but with qubits: No longer are these units of information restricted to the binary states of 1 or 0.

With quantum superposition or entanglement added, qubits mean a great leap forward in terms of sheer speed and power and the complexity of the calculations they can handle. One simple rule still holds, though: More qubits mean more speed and more computing power.

Feb 23, 2023

Scientists Discovered How to Speed Up Time. Seriously

Posted by in categories: quantum physics, time travel

In the physical world, time marches in one direction, but things aren’t so straight forward in the quantum realm. Researchers have discovered that it’s possible to speed up, slow down, or reverse the flow of time in a quantum system. This isn’t exactly time travel, but is instead implementing or reverting to different quantum states from different points in time.

Feb 23, 2023

AI Helps Crack NIST-Recommended Post-Quantum Encryption Algorithm

Posted by in categories: encryption, information science, quantum physics, robotics/AI

The CRYSTALS-Kyber public-key encryption and key encapsulation mechanism recommended by NIST in July 2022 for post-quantum cryptography has been broken. Researchers from the KTH Royal Institute of Technology, Stockholm, Sweden, used recursive training AI combined with side channel attacks.

A side-channel attack exploits measurable information obtained from a device running the target implementation via channels such as timing or power consumption. The revolutionary aspect of the research (PDF) was to apply deep learning analysis to side-channel differential analysis.

“Deep learning-based side-channel attacks,” say the researchers, “can overcome conventional countermeasures such as masking, shuffling, random delays insertion, constant-weight encoding, code polymorphism, and randomized clock.”

Feb 22, 2023

Quantum bits: AWS releases hardware design tool; Google reduces error rates

Posted by in categories: computing, quantum physics

Today’s news from the frontier of quantum computing includes Amazon Web Services’ release of cloud-based simulation software for modeling the electromagnetic properties of quantum hardware, Google’s latest technological advance aimed at lowering the error rate of quantum calculations, and new recommendations about the public sector’s role on the frontier.

Amazon opens a ‘Palace’ for designers

Continue reading “Quantum bits: AWS releases hardware design tool; Google reduces error rates” »

Feb 22, 2023

Researchers make a new type of quantum material with a dramatic distortion pattern

Posted by in categories: materials, quantum physics

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have created a new type of quantum material whose atomic scaffolding, or lattice, has been dramatically warped into a herringbone pattern.

The resulting distortions are “huge” compared to those achieved in other materials, said Woo Jin Kim, a postdoctoral researcher at the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC who led the study.

“This is a very fundamental result, so it’s hard to make predictions about what may or may not come out of it, but the possibilities are exciting,” said SLAC/Stanford Professor and SIMES Director Harold Hwang.

Feb 22, 2023

The universe as a quantum

Posted by in category: quantum physics

Gravity condensate.


Dropbox is a free service that lets you bring your photos, docs, and videos anywhere and share them easily. Never email yourself a file again!