Toggle light / dark theme

The digital devices that we rely on so heavily in our day-to-day and professional lives today—smartphones, tablets, laptops, fitness trackers, etc.—use traditional computational technology. Traditional computers rely on a series of mathematical equations that use electrical impulses to encode information in a binary system of 1s and 0s. This information is transmitted through quantitative measurements called “bits.”

Unlike traditional computing, quantum computing relies on the principles of quantum theory, which address principles of matter and energy on an atomic and subatomic scale. With quantum computing, equations are no longer limited to 1s and 0s, but instead can transmit information in which particles exist in both states, the 1 and the 0, at the same time.

Quantum computing measures electrons or photons. These subatomic particles are known as quantum bits, or ” qubits.” The more qubits are used in a computational exercise, the more exponentially powerful the scope of the computation can be. Quantum computing has the potential to solve equations in a matter of minutes that would take traditional computers tens of thousands of years to work out.

This interface can bridge the gap between theory and experiment by allowing researchers to conduct real-time quantum-in-the-loop experiments.

Power grid equipment can now be interfaced with quantum computers! Power grids.

But, quantum computers offer hope as they can handle a large number of computations in a short amount of time. Quantum computing research is happening at light speed, and there is a potential for their use to optimize power grids.


NREL

Power grids are becoming increasingly complex as the number of ways to supply and generate energy expands. This makes classical computers overwhelmed and unable to handle the computational needs of power systems.

Waveguiding scheme enables highly confined subnanometer optical fields.

Researchers have pioneered a novel method for confining light to subnanometer scales. This development offers promising potential for advancements in areas such as light-matter interactions and super-resolution nanoscopy.

Advancements in Light Confinement Technology.

Australia-based Q-CTRL has officially announced that it will partner with the Australian military and AUKUS to develop GPS-free navigation using quantum sensors.

Australian quantum technology developer Q-CTRL has now officially partnered with Australia’s Department of Defence (DoD) and, by proxy, AUKUS partners to develop quantum sensors that will deliver quantum-assured navigation capability for military platforms. The program will use Q-CTRL’s “software-ruggedized” quantum sensing technology to enhance positioning and navigation.


Q-CTRL

Navigating using atoms.

Experts from CERN, DESY, IBM Quantum and others have published a white paper identifying activities in particle physics that could benefit from the application of quantum-computing technologies.

Last week, researchers published an important identifying activities in where burgeoning technologies could be applied. The paper, authored by experts from CERN, DESY, IBM Quantum and over 30 other organizations, is now available as a preprint on arXiv.

With quantum-computing technologies rapidly improving, the paper sets out where they could be applied within particle physics in order to help tackle computing challenges related not only to the Large Hadron Collider’s ambitious upgrade program, but also to other colliders and low-energy experiments worldwide.

Science and Technology:

Hope that they find a medicine to cure aging and turn us immortal and able to live forever still during “our” lifetime.


Insilico Medicine, a clinical stage generative artificial intelligence (AI)-driven drug discovery company, today announced that it combined two rapidly developing technologies, quantum computing and generative AI, to explore lead candidate discovery in drug development and successfully demonstrated the potential advantages of quantum generative adversarial networks in generative chemistry.

The study, published in the Journal of Chemical Information and Modeling, was led by Insilico’s Taiwan and UAE centers which focus on pioneering and constructing breakthrough methods and engines with rapidly developing technologies—including generative AI and —to accelerate drug discovery and development.

The research was supported by University of Toronto Acceleration Consortium director Alán Aspuru-Guzik, Ph.D., and scientists from the Hon Hai (Foxconn) Research Institute.

Over the past decades, physicists and engineers have been trying to develop various technologies that leverage quantum mechanical effects, including quantum microscopes. These are microscopy tools that can be used to study the properties of quantum particles and quantum states in depth.

Researchers at Silicon Quantum Computing (SQC)/UNSW Sydney and the University of Melbourne recently created a new solid-state quantum that could be used to control and examine the wave functions of atomic qubits in silicon. This microscope, introduced in a paper published in Nature Electronics, was created combining two different techniques, known as ion implantation and atomic precision lithography.

“Qubit device operations often rely on shifting and overlapping the qubit wave functions, which relate to the spatial distribution of the electrons at play, so a comprehensive knowledge of the latter provides a unique insight into building quantum circuits efficiently,” Benoit Voisin and Sven Rogge, two researchers who carried out the study, told Phys.org.

Ark Invest, which is led by CEO Cathie Wood, has been pouring money into semiconductor stocks lately and has made another notable purchase. According to portfolio updates published by the firm yesterday, Wood’s company has increased its investment in Quantum-Si (QSI-6.20%) — a small-cap biotech with a specialized, chip-based platform for protein sequencing.

Ark Invest regularly publishes information about stocks that have been bought and sold for its exchange-traded funds (ETFs), and a recent update showed it purchased more than 1.4 million shares of Quantum-Si stock for its Ark Genomic Revolution ETF (ARKG-1.84%) on Thursday. The purchase would have been valued at roughly $3.7 million based on the stock’s price at market close yesterday, and is the largest investment that Ark has made in the healthcare-tech upstart’s stock so far.

So the question is: Why is Wood excited about this little-known life sciences player?