Menu

Blog

Archive for the ‘quantum physics’ category: Page 354

Nov 26, 2022

A Boiling Cauldron: Cybersecurity Trends, Threats, And Predictions For 2023

Posted by in categories: cybercrime/malcode, information science, internet, quantum physics

By Chuck Brooks


There are many other interesting trends to look out for in 2023. These trends will include the expansion of use of a Software Bill of Materials (SBOM), the integration of more 5G networks to bring down latency of data delivery, more Deep Fakes being used for fraud, low code for citizen coding, more computing at the edge, and the development of initial stages of the implementation of quantum technologies and algorithms.

When all is said and done, 2023 will face a boiling concoction of new and old cyber-threats. It will be an especially challenging year for all those involved trying to protect their data and for geopolitical stability.

Continue reading “A Boiling Cauldron: Cybersecurity Trends, Threats, And Predictions For 2023” »

Nov 26, 2022

Fluxonium qubits bring the creation of a quantum computer closer

Posted by in categories: computing, information science, quantum physics

Russian scientists from University of Science and Technology MISIS and Bauman Moscow State Technical University were one of the first in the world to implement a two-qubit operation using superconducting fluxonium qubits. Fluxoniums have a longer life cycle and a greater precision of operations, so they are used to make longer algorithms. An article on research that brings the creation of a quantum computer closer to reality has been published in npj Quantum Information.

One of the main questions in the development of a universal quantum computer is about . Namely, which quantum objects are the best to make processors for quantum computers: electrons, photons, ions, superconductors, or other “quantum transistors.” Superconducting qubits have become one of the most successful platforms for quantum computing during the past decade. To date, the most commercially successful superconducting qubits are transmons, which are actively investigated and used in the quantum developments of Google, IBM and other world leading laboratories.

The main task of a qubit is to store and process information without errors. Accidental noise and even mere observation can lead to the loss or alteration of data. The stable operation of often requires extremely low ambient temperatures—close to zero Kelvin, which is hundreds of times colder than the temperature of open space.

Nov 26, 2022

Application: Quantum mechanics on curved spaces — Lec 26 — Frederic Schuller

Posted by in category: quantum physics

This is from a series of lectures — “Lectures on the Geometric Anatomy of Theoretical Physics” delivered by Dr. Frederic P Schuller.

Nov 25, 2022

Physicists Just Reached a New Speed Limit For Moving Quantum Information

Posted by in category: quantum physics

Read more about Physicists Just Reached a New Speed Limit For Moving Quantum Information.

Nov 25, 2022

The early universe in a quantum gas

Posted by in categories: particle physics, quantum physics

With a Bose–Einstein condensate in a magnetic field, researchers can see hints of particle production in expanding space—and they can run the experiment more than once.

Nov 25, 2022

Black Holes and Holograms: A New Theory That Changes Our Understanding of the Universe

Posted by in categories: cosmology, holograms, quantum physics

Confusing? It may sound so, but it isn’t actually. What Benini and Milan have done is apply the theory of the holographic principle to black holes. In this way, their mysterious thermodynamic properties have become more understandable: by focusing on predicting that these bodies have high entropy and looking at them in terms of quantum mechanics, which allows us to describe them as a hologram: they have two dimensions, in which gravity disappears, but they reproduce an object in three dimensions.

But there’s more. Much more.

According to the authors of the new studies, this is only the first step towards a deeper understanding of these cosmic bodies and the properties that characterize them when quantum mechanics intersects with general relativity.

Nov 25, 2022

David Deutsch — What is Ultimate Reality?

Posted by in category: quantum physics

What is the deepest nature of things? Our world is complex, filled with so much stuff. But down below, what’s most fundamental, what is ultimate reality? Is there anything nonphysical? Anything spiritual? Or only the physical world? Many feel certain of their belief, on each side of controversial question.

Free access to Closer to Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Continue reading “David Deutsch — What is Ultimate Reality?” »

Nov 24, 2022

Two Paths to a Magnetic Gradiometer

Posted by in categories: particle physics, quantum physics

From the slivers of natural magnetite used as the earliest magnetic compasses to today’s cryogenically cooled superconducting quantum interference devices, researchers have employed many diverse means to measure magnetic fields. Now Robert Cooper at George Mason University, Virginia, and colleagues have added two more [1]. Their instruments, which are variations on a high-precision instrument called an optically pumped atomic magnetometer, are the first demonstrations of “intrinsic radio-frequency gradiometers.” These devices are especially suited to measure weak, local radio-frequency sources while excluding background fields.

At the heart of an optically pumped atomic magnetometer lies a gas of alkali atoms whose spins are aligned by a circularly polarized laser—the optical pump. The presence of an external magnetic field perturbs the spin axis of these atoms, showing up as a change in the polarization direction of the probe beam—a second, linearly polarized laser that is also transmitted through the gas.

In the devices devised by Cooper and his colleagues, the probe beam makes multiple passes through the alkali gas, maximizing the device’s sensitivity to weak fields. In one setup, a high-power probe beam takes a single M-shaped route through the gas, passing twice through a pair of vapor cells. In the other, a low-power beam traces overlapping V-shaped paths, passing 46 times through a single vapor cell.

Nov 24, 2022

A Dense, Cold Gas of Europium Atoms

Posted by in categories: particle physics, quantum physics

A Bose-Einstein condensate of europium atoms provides a new experimental platform for studying quantum spin interactions.

Nov 24, 2022

Lee Smolin: Quantum Gravity and Einstein’s Unfinished Revolution

Posted by in categories: biological, cosmology, quantum physics

https://www.youtube.com/watch?v=WgLo4gmEraU

Lee Smolin is a theoretical physicist, co-inventor of loop quantum gravity, and a contributor of many interesting ideas to cosmology, quantum field theory, the foundations of quantum mechanics, theoretical biology, and the philosophy of science. He is the author of several books including one that critiques the state of physics and string theory called The Trouble with Physics, and his latest book, Einstein’s Unfinished Revolution: The Search for What Lies Beyond the Quantum.

This episode is presented by Cash App. Download it & use code “LexPodcast”:
Cash App (App Store): https://apple.co/2sPrUHe.
Cash App (Google Play): https://bit.ly/2MlvP5w.

Continue reading “Lee Smolin: Quantum Gravity and Einstein’s Unfinished Revolution” »