Menu

Blog

Archive for the ‘quantum physics’ category: Page 407

May 13, 2022

More efficient optical quantum gates

Posted by in categories: quantum physics, robotics/AI

Future quantum computers are expected not only to solve particularly tricky computing tasks, but also to be connected to a network for the secure exchange of data. In principle, quantum gates could be used for these purposes. But until now, it has not been possible to realize them with sufficient efficiency. By a sophisticated combination of several techniques, researchers at the Max Planck Institute of Quantum Optics (MPQ) have now taken a major step towards overcoming this hurdle.

For decades, computers have been getting faster and more powerful with each . This development makes it possible to constantly open up new applications, for example in systems with artificial intelligence. But further progress is becoming increasingly difficult to achieve with established computer technology. For this reason, researchers are now setting their sights on alternative, completely new concepts that could be used in the future for some particularly difficult computing tasks. These concepts include quantum computers.

Their function is not based on the combination of digital zeros and ones—the classical bits—as is the case with conventional, microelectronic computers. Instead, a quantum computer uses , or qubits for short, as the basic units for encoding and processing information. They are the counterparts of bits in the quantum world—but differ from them in one crucial feature: qubits can not only assume two fixed values or states such as zero or one, but also any values in between. In principle, this offers the possibility to carry out many computing processes simultaneously instead of processing one logical operation after the other.

May 13, 2022

Revolutionary New Qubit Platform Could Transform Quantum Computing

Posted by in categories: engineering, quantum physics, supercomputing

The digital device you are using to view this article is no doubt using the bit, which can either be 0 or 1, as its basic unit of information. However, scientists around the world are racing to develop a new kind of computer based on the use of quantum bits, or qubits, which can simultaneously be 0 and 1 and could one day solve complex problems beyond any classical supercomputers.

A research team led by scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, in close collaboration with FAMU-FSU College of Engineering Associate Professor of Mechanical Engineering Wei Guo, has announced the creation of a new qubit platform that shows great promise to be developed into future quantum computers. Their work is published in the journal Nature.

“Quantum computers could be a revolutionary tool for performing calculations that are practically impossible for classical computers, but there is still work to do to make them reality,” said Guo, a paper co-author. “With this research, we think we have a breakthrough that goes a long way toward making qubits that help realize this technology’s potential.”

May 12, 2022

Quantum computers vs supercomputers: How do they differ?

Posted by in categories: augmented reality, quantum physics, robotics/AI, supercomputing

Over the years, supercomputers have played a pivotal role in pushing the frontiers of science. Earlier this year, Meta launched one of the fastest AI supercomputers, the AI Research SuperCluster (RSC), to build sophisticated AI models that can learn from trillions of examples; navigate hundreds of different languages; seamlessly analyse text, images, and video together; build AR tools etc.

However, the quest for something even faster than supercomputers led to the development of quantum computers. Last year, the University of Science and Technology of China (USTC) introduced the world’s fastest programmable superconducting quantum computer; Zuchongzhi 2.1 is a million times faster than a conventional computer.

At last year’s I/O conference, Google unveiled a Quantum AI campus in Santa Barbara, California, complete with a quantum data centre, quantum hardware research labs, and quantum processor chip fab facilities. The tech giant plans to build a useful, error-corrected quantum computer within a decade.

May 12, 2022

Good vibrations for quantum computing

Posted by in categories: computing, quantum physics

Quantum computing operations are realized using acoustic devices, paving the way for a new type of quantum processor.

May 12, 2022

Quantum one-way street in topological insulator nanowires

Posted by in categories: computing, nanotechnology, quantum physics

Very thin wires made of a topological insulator could enable highly stable qubits, the building blocks of future quantum computers. Scientists see a new result in topological insulator devices as an important step towards realizing the technology’s potential.

An international group of scientists have demonstrated that wires more than 100 times thinner than a can act like a quantum one-way street for electrons when made of a peculiar material known as a .

The discovery opens the pathway for new technological applications of devices made from topological insulators and demonstrates a significant step on the road to achieving so-called topological qubits, which it has been predicted can robustly encode information for a quantum computer.

May 12, 2022

New transistors integrating high-k perovskite oxides and 2D semiconductors

Posted by in categories: computing, quantum physics

Over the past decades, electronics engineers and material scientists worldwide have been investigating the potential of various materials for fabricating transistors, devices that amplify or switch electrical signals in electronic devices. Two-dimensional (2D) semiconductors have been known to be particularly promising materials for fabricating the new electronic devices.

Despite their advantages, the use of these materials in electronics greatly depends on their integration with high-quality dielectrics, insulating materials or materials that are poor conductors of electrical current. These materials, however, can be difficult to deposit on 2D substrates.

Researchers at Nanyang Technological University, Peking University, Tsinghua University, and the Beijing Academy of Quantum Information Sciences have recently demonstrated the successful integration of single-crystal strontium titrate, a high-κ perovskite , with 2D semiconductors, using van der Waals forces. Their paper, published in Nature Electronics, could open new possibilities for the development of new types of transistors and electronic components.

May 12, 2022

New tech can double spectral bandwidth in some 5G systems

Posted by in categories: computing, internet, quantum physics

Some materials, like wood, are insulators that block the flow of electricity. Conductors, such as copper, allow for electricity to flow through them. Other materials—semiconductors—can be either/or depending on conditions such as applied electric field or temperature. Unlike wood or copper or silicon, though, topological insulators (TIs) are an exotic state of matter that is conductive on the surface, but not in the bulk. Such unique material properties have great scientific implications and could be of use in a range of technologies, including wireless communications, radar and quantum information processing.

Through a , the research labs of Aravind Nagulu, assistant professor in the Preston M. Green Department of Electrical & Systems Engineering at Washington University in St. Louis, and colleagues from Columbia University and the City University of New York’s Advanced Science Research Center have demonstrated the first implementation of an electromagnetic topological insulator on an integrated chip.

The collaborative project’s findings were published May 2 in the journal Nature Electronics.

May 12, 2022

Unusual quantum state of matter observed for the first time

Posted by in categories: particle physics, quantum physics

It’s not every day that someone comes across a new state of matter in quantum physics, the scientific field devoted to describing the behavior of atomic and subatomic particles in order to elucidate their properties.

May 11, 2022

IBM wants its quantum supercomputers running at 4,000-plus qubits by 2025

Posted by in categories: military, quantum physics, supercomputing

Forty years after it first began to dabble in quantum computing, IBM is ready to expand the technology out of the lab and into more practical applications — like supercomputing! The company has already hit a number of development milestones since it released its previous quantum roadmap in 2020, including the 127-qubit Eagle processor that uses quantum circuits and the Qiskit Runtime API. IBM announced on Wednesday that it plans to further scale its quantum ambitions and has revised the 2020 roadmap with an even loftier goal of operating a 4,000-qubit system by 2025.

Before it sets about building the biggest quantum computer to date, IBM plans release its 433-qubit Osprey chip later this year and migrate the Qiskit Runtime to the cloud in 2023, “bringing a serverless approach into the core quantum software stack,” per Wednesday’s release. Those products will be followed later that year by Condor, a quantum chip IBM is billing as “the world’s first universal quantum processor with over 1,000 qubits.”

This rapid four-fold jump in quantum volume (the number of qubits packed into a processor) will enable users to run increasingly longer quantum circuits, while increasing the processing speed — measured in CLOPS (circuit layer operations per second) — from a maximum of 2,900 OPS to over 10,000. Then it’s just a simple matter of quadrupaling that capacity in the span of less than 24 months.

May 11, 2022

Black Holes and the Quantum-Extended Church-Turing Thesis | Quantum Colloquium

Posted by in categories: computing, cosmology, quantum physics

Leonard Susskind (Stanford University)
https://simons.berkeley.edu/events/quantum-colloquium-black-…ing-thesis.
Quantum Colloquium.

A few years ago three computer scientists named Adam Bouland, Bill Fefferman, and Umesh Vazirani, wrote a paper that promises to radically change the way we think about the interiors of black holes. Inspired by their paper I will explain how black holes threaten the QECTT, and how the properties of horizons rescue the thesis, and eventually make predictions for the complexity of extracting information from behind the black hole horizon. I’ll try my best to explain enough about black holes to keep the lecture self contained.

Continue reading “Black Holes and the Quantum-Extended Church-Turing Thesis | Quantum Colloquium” »