Menu

Blog

Archive for the ‘quantum physics’ category: Page 419

Mar 25, 2022

Experimental photonic quantum memristor

Posted by in categories: computing, quantum physics

We have designed an optical memristive element that allows the transmission of coherent quantum information as a superposition of single photons on spatial modes. We have realized the prototype of such a device on a glass-based, laser-written photonic processor and thereby provided what is, to the best of our knowledge, the first experimental demonstration of a quantum memristor. We have then designed a memristor-based quantum reservoir computer and tested it numerically on both classical and quantum tasks, achieving strong performance with very limited physical and computational resources and, most importantly, no architectural change from one to the other.

Our demonstrated quantum memristor is feasible in practice and readily scalable to larger architectures using integrated quantum photonics, with immediate feasibility in the noisy intermediate-scale quantum regime. The only hard limit for larger scalability—as with most quantum photonic applications—is the achievable single-photon rate. A foreseeable advancement would be the integration of optical and electronic components within the same chip (rather than using external electronics), which is conceivable using current semiconductor technology. Additionally, the frequency at which our quantum memristor operates can be easily improved. For laser-written circuits, high-frequency operations are readily available at the expense of higher-power consumption28, whereas other photonic platforms routinely enable frequencies even in the gigahertz regime43. For exploiting these frequencies, however, the photon detection rate must be improved as well.

Mar 24, 2022

Quantum dots shine bright to help scientists see inflammatory cells in fat

Posted by in categories: biotech/medical, quantum physics

To accurately diagnose and treat diseases, doctors and researchers need to see inside bodies. Medical imaging tools have come a long way since the humble X-ray, but most existing tools remain too coarse to quantify numbers or specific types of cells inside deep tissues of the body.

Mar 24, 2022

Nadia Carlsten drives Amazon’s quest for a quantum breakthrough

Posted by in categories: computing, quantum physics

The senior product manager leading hardware and software product development at the Center for Quantum Computing wants to make fault-tolerant quantum computing a reality.

Mar 24, 2022

Using just a laptop, an encryption code designed to prevent a quantum computer attack was cracked in just 53 hours

Posted by in categories: computing, encryption, quantum physics, security

Tech institutions are trying to find ways to guarantee security as new processing systems becoming increasingly sophisticated.

Mar 24, 2022

How Can Quantum Computing Change the World?

Posted by in categories: business, climatology, computing, health, quantum physics

Every industry will be affected by quantum computing. They will alter the way business is done and the security systems in place which protect data, how we battle illnesses and create new materials, as well as how we tackle health and climate challenges.

As the race to build the first commercially functional quantum computer heats up, here we discuss a handful of the ways quantum computing will alter our world.

Mar 24, 2022

Physicists report on first programmable quantum sensor

Posted by in categories: information science, quantum physics, robotics/AI, satellites

Atomic clocks are the best sensors mankind has ever built. Today, they can be found in national standards institutes or satellites of navigation systems. Scientists all over the world are working to further optimize the precision of these clocks. Now, a research group led by Peter Zoller, a theorist from Innsbruck, Austria, has developed a new concept that can be used to operate sensors with even greater precision irrespective of which technical platform is used to make the sensor. “We answer the question of how precise a sensor can be with existing control capabilities, and give a recipe for how this can be achieved,” explain Denis Vasilyev and Raphael Kaubrügger from Peter Zoller’s group at the Institute of Quantum Optics and Quantum Information at the Austrian Academy of Sciences in Innsbruck.

For this purpose, the physicists use a method from processing: Variational quantum algorithms describe a circuit of quantum gates that depends on free parameters. Through optimization routines, the sensor autonomously finds the best settings for an optimal result. “We applied this technique to a problem from metrology—the science of measurement,” Vasilyev and Kaubrügger explain. “This is exciting because historically advances in were motivated by metrology, and in turn emerged from that. So, we’ve come full circle here,” Peter Zoller says. With the new approach, scientists can optimize quantum sensors to the point where they achieve the best possible precision technically permissible.

Mar 23, 2022

The double-slit experiment: Is light a wave or a particle?

Posted by in categories: particle physics, quantum physics

The double-slit experiment is one of the most famous experiments in physics and definitely one of the weirdest. It demonstrates that matter and energy (such as light) can exhibit both wave and particle characteristics — known as the particle-wave duality of matter — depending on the scenario, according to the scientific communication site Interesting Engineering.

According to the University of Sussex, American physicist Richard Feynman referred to this paradox as the central mystery of quantum mechanics.

Mar 23, 2022

The Quantum Technology Ecosystem — Explained

Posted by in categories: business, quantum physics

If you think you understand quantum mechanics, you don’t understand quantum mechanics

Richard Feynman

Mar 22, 2022

Quantum technology could make charging electric cars as fast as pumping gas

Posted by in categories: energy, quantum physics, sustainability

Whether it’s photovoltaics or fusion, sooner or later, human civilization must turn to renewable energies. This is deemed inevitable, considering the ever-growing energy demands of humanity and the finite nature of fossil fuels. Much research has been pursued in order to develop alternative sources of energy, most of which use electricity as the main energy carrier. The extensive R&D in renewables has been accompanied by gradual societal changes as the world adopted new products and devices running on renewables. The most striking change has been the rapid adoption of electric vehicles. While they were rarely seen on the roads even 10 years ago, now, millions of electric cars are being sold annually. The electric car market is one of the most rapidly growing sectors.

Unlike traditional cars, which derive from the combustion of hydrocarbon fuels, electric vehicles rely on batteries as the for their energy. For a long time, batteries had far lower energy density than those offered by hydrocarbons, which resulted in very low ranges of early electric vehicles. However, gradual improvement in eventually allowed the drive ranges of to be within acceptable levels in comparison to gasoline-burning cars. It is no understatement that the improvement in battery storage technology was one of the main technical bottlenecks that had to be solved in order to kickstart the current electric vehicle revolution.

However, despite the vast improvements in battery technology, today’s consumers of face another difficulty: slow battery charging speed. Currently, cars take about 10 hours to fully recharge at home. Even the fastest superchargers at the require up to 20 to 40 minutes to fully recharge the vehicles. This creates additional costs and inconvenience to the customers.

Mar 21, 2022

Researchers Perform Largest Quantum Computing Chemistry Simulations to Date

Posted by in categories: chemistry, information science, particle physics, quantum physics, robotics/AI

The researchers simulated the molecules H4, molecular nitrogen, and solid diamond. These involved as many as 120 orbitals, the patterns of electron density formed in atoms or molecules by one or more electrons. These are the largest chemistry simulations performed to date with the help of quantum computers.

A classical computer actually handles most of this fermionic quantum Monte Carlo simulation. The quantum computer steps in during the last, most computationally complex step—calculating the differences between the estimates of the ground state made by the quantum computer and the classical computer.

The prior record for chemical simulations with quantum computing employed 12 qubits and a kind of hybrid algorithm known as a variational quantum eigensolver (VQE). However, VQEs possess a number of limitations compared with this new hybrid approach. For example, when one wants a very precise answer from a VQE, even a small amount of noise in the quantum circuitry “can cause enough of an error in our estimate of the energy or other properties that’s too large,” says study coauthor William Huggins, a quantum physicist at Google Quantum AI in Mountain View, Calif.