Menu

Blog

Archive for the ‘quantum physics’ category: Page 426

Mar 20, 2022

Scientists Discover “Secret Sauce” Behind Exotic Properties of Unusual New Quantum Material

Posted by in categories: materials, quantum physics

Work will aid design of other unusual quantum materials with many potential applications.

MIT physicists and colleagues, including scientists from Berkeley Lab, have discovered the “secret sauce” behind the exotic properties of a new quantum material known as a kagome metal.

Kagome metals have long mystified scientists for their ability to exhibit collective behavior when cooled below room temperature.

Mar 19, 2022

Calculations provide insight into why sound waves carry ‘negative mass’

Posted by in category: quantum physics

A new theoretical study has revealed how sound waves transfer small amounts of mass as they travel. Angelo Esposito, Rafael Krichevsky and Alberto Nicolis at Columbia University in the US have calculated that the transfer occurs even when both quantum and relativistic effects are ignored. Their result implies that current interpretations of the properties of sound waves may need to be rethought.


Physicists still puzzled about how effect can occur in solids.

Mar 18, 2022

Toward a quantum computer that calculates molecular energy

Posted by in categories: chemistry, food, information science, quantum physics, robotics/AI, sustainability

Quantum computers are getting bigger, but there are still few practical ways to take advantage of their extra computing power. To get over this hurdle, researchers are designing algorithms to ease the transition from classical to quantum computers. In a new study in Nature, researchers unveil an algorithm that reduces the statistical errors, or noise, produced by quantum bits, or qubits, in crunching chemistry equations.

Developed by Columbia chemistry professor David Reichman and postdoc Joonho Lee with researchers at Google Quantum AI, the uses up to 16 qubits on Sycamore, Google’s 53- , to calculate ground state energy, the lowest energy state of a molecule. “These are the largest quantum chemistry calculations that have ever been done on a real quantum device,” Reichman said.

Continue reading “Toward a quantum computer that calculates molecular energy” »

Mar 18, 2022

Milestone Experiment Proves Quantum Communication Really Is Faster

Posted by in category: quantum physics

In a Paris lab, researchers have shown for the first time that quantum methods of transmitting information are superior to classical ones.

Mar 18, 2022

This Diamond Transistor is Still Raw, But Its Future Looks Bright

Posted by in categories: computing, cosmology, quantum physics

Researchers in Japan have developed a diamond FET with high hole mobility.


In the 1970s, Stephen Hawking found that an isolated black hole would emit radiation but only when considered quantum mechanics. This is known as black hole evaporation because the black hole shrinks. However, this led to the black hole information paradox.

If the black hole evaporates entirely, physical information would permanently disappear in a black hole. However, this violates a core precept of quantum physics: the information cannot vanish from the Universe.

Continue reading “This Diamond Transistor is Still Raw, But Its Future Looks Bright” »

Mar 18, 2022

Stephen Hawking’s famous black hole paradox solved

Posted by in categories: cosmology, quantum physics

If the black hole evaporates entirely, physical information would permanently disappear in a black hole. However, this violates a core precept of quantum physics: the information cannot vanish from the Universe.

A new study by an international quartet of physicists suggests that black holes are more complex than originally understood. They have a gravitational field that, at the quantum level, encodes information about how they were formed.

The research team includes Professor Xavier Calmet from the University of Sussex School of Mathematical and Physical Sciences, Professor Roberto Casadio (INFN, University of Bologna), Professor Stephen Hsu (Michigan State University), along with Ph.D. student Folkert Kuipers (University of Sussex). Their study significantly improves understanding of black holes and resolves a problem that has confounded scientists for nearly half a century; the black hole information paradox.

Mar 17, 2022

Quantum Computing Breakthrough: Scientists Sent the First ‘Landline’ Message

Posted by in categories: computing, quantum physics

Mar 17, 2022

Quantum Gravity: Mathematical Discovery Could Shed Light on Secrets of the Universe

Posted by in categories: cosmology, mathematics, quantum physics

How can Einstein’s theory of gravity be unified with quantum mechanics? This is a challenge that could give us deep insights into phenomena such as black holes and the birth of the universe. Now, a new article in Nature Communications, written by researchers from Chalmers University of Technology, Sweden, and MIT, USA, presents results that cast new light on important challenges in understanding quantum gravity. Credit: Chalmers University of Technology / Yen Strandqvist.

How can Einstein’s theory of gravity be unified with quantum mechanics? It is a challenge that could give us deep insights into phenomena such as black holes and the birth of the universe. Now, a new article in Nature Communications, written by researchers from Chalmers University of Technology 0, Sweden, and MIT 0, USA, presents results that cast new light on important challenges in understanding quantum gravity.

A grand challenge in modern theoretical physics is to find a ‘unified theory’ that can describe all the laws of nature within a single framework – connecting Einstein’s general theory of relativity, which describes the universe on a large scale, and quantum mechanics, which describes our world at the atomic level. Such a theory of ‘quantum gravity’ would include both a macroscopic and microscopic description of nature.

Mar 17, 2022

What’s Inside a Black Hole? Physicist Probes Holographic Duality With Quantum Computing To Find Out

Posted by in categories: cosmology, holograms, mathematics, particle physics, quantum physics, robotics/AI

Dude, what if everything around us was just … a hologram?

The thing is, it could be—and a University of Michigan physicist is using quantum computing and machine learning to better understand the idea, called holographic duality.

Holographic duality is a mathematical conjecture that connects theories of particles and their interactions with the theory of gravity. This conjecture suggests that the theory of gravity and the theory of particles are mathematically equivalent: what happens mathematically in the theory of gravity happens in the theory of particles, and vice versa.

Mar 17, 2022

Bringing practical applications of quantum computing closer

Posted by in categories: computing, quantum physics

Two Amazon papers at #QIP2022 could have near-term applications: Mario Berta and colleagues propose a new approach to statistical phase estimation that could en… See more.


New phase estimation technique reduces qubit count, while learning framework enables characterization of noisy quantum systems.