Archive for the ‘quantum physics’ category: Page 440
Feb 11, 2022
IBM Announces Quantum Computing Partnership With Quebec
Posted by Gemechu Taye in categories: business, government, quantum physics, robotics/AI
IBM has just announced a partnership with the Government of Quebec to create the Quebec-IBM Discovery Accelerator in Bromont, Quebec. The accelerator will focus on using quantum computing, Artificial Intelligence (AI), and High-Performance Computing (HPC) to develop new projects, business/scientific/academia collaborations, and skills-building initiatives in research areas including energy, life sciences (genomics and drug discovery), new materials development, and sustainability. This is the fourth such center that IBM has announced. The three previously announced partnerships are with Cleveland Clinic, the University of Illinois Urbana-Champaign, and the UK’s Science and Technology Facilities Council Hartree Centre. IBM’s formal mission statement for these Discovery Accelerators is: “Accelerate scientific discovery and societal impact with a convergence of AI, quantum, and hybrid cloud in a community of discovery with research, academic, industry, startup, and government organizations working together.” IBM’s formal mission statement for these Discovery Accelerators is:
“Accelerate scientific discovery and societal impact with a convergence of AI, quantum, and hybrid cloud in a community of discovery with research, academic, industry, startup, and government organizations working together.”
In addition, the company has developed individual mission statements for each of the four Discovery Accelerators:
Feb 10, 2022
There Is A New Particle That Can Spontaneously Become Its Antiparticle
Posted by Shubham Ghosh Roy in categories: particle physics, quantum physics
Matter and anti-matter are always thought of as opposites. If they interact, they turn into pure energy. But there are cases, thanks to the peculiar laws of quantum mechanics, where particles and antiparticles are somewhat coexisting. Now, a new particle can be added to those cases.
Feb 10, 2022
What Europe’s $48 billion chips plan could do for quantum computing
Posted by Gemechu Taye in categories: computing, quantum physics
Feb 10, 2022
What is the double-slit experiment, and why is it so important?
Posted by Gemechu Taye in category: quantum physics
Feb 9, 2022
“Boson Clouds” Could Explain Dark Matter
Posted by Saúl Morales Rodriguéz in categories: cosmology, particle physics, quantum physics
The nature of dark matter continues to perplex astronomers. As the search for dark matter particles continues to turn up nothing, it’s tempting to throw out the dark matter model altogether, but indirect evidence for the stuff continues to be strong. So what is it? One team has an idea, and they’ve published the results of their first search.
The conditions of dark matter mean that it can’t be regular matter. Regular matter (atoms, molecules, and the like) easily absorbs and emits light. Even if dark matter were clouds of molecules so cold they emitted almost no light, they would still be visible by the light they absorb. They would appear like dark nebula commonly seen near the galactic plane. But there aren’t nearly enough of them to account for the effects of dark matter we observe. We’ve also ruled out neutrinos. They don’t interact strongly with light, but neutrinos are a form of “hot” dark matter since neutrinos move at nearly the speed of light. We know that most dark matter must be sluggish, and therefore “cold.” So if dark matter is out there, it must be something else.
In this latest work, the authors argue that dark matter could be made of particles known as scalar bosons. All known matter can be placed in two large categories known as fermions and bosons. Which category a particle is in depends on a quantum property known as spin. Fermions such as electrons and quarks have fractional spin such as 1/2 or 3/2. Bosons such as photons have an integer spin such as 1 or 0. Any particle with a spin of 0 is a scalar boson.
Feb 9, 2022
Top resources to learn quantum machine learning
Posted by Jose Ruben Rodriguez Fuentes in categories: business, information science, quantum physics, robotics/AI
Quantum computing and machine learning are two of the most exciting technologies that can transform businesses. We can only imagine how powerful it can be if we can combine the power of both of these technologies. When we can integrate quantum algorithms in programs based on machine learning, that is called quantum machine learning. This fascinating area has been a major area of tech firms, and they have brought out tools and platforms to deploy such algorithms effectively. Some of these include TensorFlow Quantum from Google, Quantum Machine Learning (QML) library from Microsoft, QC Ware Forge built on Amazon Braket, etc.
Students skilled in working with quantum machine learning algorithms can be in great demand due to the opportunities the field holds. Let us have a look at a few online courses one can use to learn quantum machine learning.
In this course, the students will start with quantum computing and quantum machine learning basics. The course will also cover topics on building Qnodes and Customised Templates. It also teaches students to calculate Autograd and Loss Function with quantum computing using Pennylane and to develop with the Pennylane.ai API. The students will also learn how to build their own Pennylane Plugin and turn Quantum Nodes into Tensorflow Keras Layers.
Feb 9, 2022
A CMOS-based chip that integrates silicon quantum dots and multiplexed readout electronics
Posted by Saúl Morales Rodriguéz in categories: computing, quantum physics
Researchers at École Polytechnique Fédérale de Lausanne (EPFL) and the Hitachi Cambridge Laboratory have recently designed an integrated circuit (IC) that integrates silicon quantum dots with conventional readout electronics. This chip, introduced in a paper published in Nature Electronics, is based on a 40-nm cryogenic complementary metal-oxide semiconductor (CMOS) technology that is readily and commercially available.
“Our recent paper builds on the expertise of the two groups involved,” Andrea Ruffino, one of the researchers at EPFL who carried out the study, told TechXplore. “The goal of our group was to build cryogenic (Bi)CMOS integrated circuits for readout and control of quantum computers, to be co-packaged or co-integrated in the final stage with silicon quantum processors. On the other hand, the team at the Hitachi Cambridge Laboratory have been studying silicon quantum devices for many years.”
Ruffino and his colleagues at EPFL joined forces with the team at the Hitachi Cambridge Laboratory with the common goal of uniting classical circuits and quantum devices on a single chip. Their paper builds on some of their previous efforts, including the proposal of cryogenic CMOS ICs for quantum computing, as well as the realization of fast-sensing and time-multiplexed sensing of silicon quantum devices.
Feb 6, 2022
Photons simulate time travel in the lab
Posted by Dan Kummer in categories: encryption, quantum physics, time travel
Feb 4, 2022
Atomically crafted quantum magnets and their anomalous excitations
Posted by Saúl Morales Rodriguéz in categories: energy, nanotechnology, quantum physics
Quantum magnets can be studied using high-resolution spectroscopic studies to access magnetodynamic quantities including energy barriers, magnetic interactions, and lifetime of excited states. In a new report now published in Science Advances, Sascha Brinker and a team of scientists in advanced simulation and microstructure physics in Germany studied a previously unexplored flavor of low-energy spin excitation for quantum spins coupled to an electron bath. The team combined time-dependent and many-body perturbation theories and magnetic field-dependent tunneling spectra to identify magnetic states of the nanostructures and rationalized the results relative to ferromagnetic and antiferromagnetic interactions. The atomically crafted nanomagnets are appealing to explore electrically pumped spin systems.
Anomalous magnetodynamics
Magnetodynamics at the atomic scale form the cornerstone of spin-based nanoscale devices with applications in future information technologies. Interactions of local spin states also play a crucial role with the local environment to determine their properties. Researchers have described the impact of orbital hybridization effects, charge transfer, and the presence of nearby impurities as strong influencers on the magnetic ground state, to determine a range of magnetodynamic qualities, including magnetic anisotropy, spin lifetime and spin-relaxation mechanisms. Experimental methods can be developed to directly capture these properties and analyze the magnetic phenomena of classical and semiclassical descriptions at sub-nanometer scales to reveal the emergence of exquisite quantum mechanical effects.