Menu

Blog

Archive for the ‘quantum physics’ category: Page 448

Dec 27, 2021

TNW’s best quantum computing and physics stories from 2021

Posted by in categories: computing, quantum physics

2021 was an incredible year for quantum computing and physics research. From time crystals to quantum immortality, we covered some gems!

Dec 26, 2021

Presenting the 1st International Symposium on Quantum Computing and Musical Creativity

Posted by in categories: business, computing, media & arts, quantum physics

By Sieglinde Pfaendler, Omar Costa Hamido, Eduardo Reck Miranda

Science and the arts have increasingly inspired each other. In the 20th century, this has led to new innovations in music composition, new musical instruments, and changes to the way that the music industry does business to day. In turn, art has helped scientists think in new ways, and make advances of their own.

An emerging community leveraging quantum computing in music and the music industry has inspired us to organize the “1st International Symposium on Quantum Computing and Musical Creativity.” This symposium will bring together pioneering individuals from academia, industry, and music. They will present research, new works, share ideas, and learn new tools for incorporating quantum computation into music and the music industry. This symposium was made possible through the funding of the QuTune Project kindly provided by the United Kingdom National Quantum Technologies Programme’s Quantum Computing and Simulation Hub (QCS Hub).

Dec 26, 2021

One of the World’s Most Powerful Supercomputers Uses Light Instead of Electric Current

Posted by in categories: quantum physics, robotics/AI, supercomputing

France’s Jean Zay supercomputer, one of the most powerful computers in the world and part of the Top500, is now the first HPC to have a photonic coprocessor meaning it transmits and processes information using light. The development represents a first for the industry.

The breakthrough was made during a pilot program that saw LightOn collaborate with GENCI and IDRIS. Igor Carron, LightOn’s CEO and co-founder said in a press release: “This pilot program integrating a new computing technology within one of the world’s Supercomputers would not have been possible without the particular commitment of visionary agencies such as GENCI and IDRIS/CNRS. Together with the emergence of Quantum Computing, this world premiere strengthens our view that the next step after exascale supercomputing will be about hybrid computing.”

The technology will now be offered to select users of the Jean Zay research community over the next few months who will use the device to undertake research on machine learning foundations, differential privacy, satellite imaging analysis, and natural language processing (NLP) tasks. LightOn’s technology has already been successfully used by a community of researchers since 2018.

Dec 26, 2021

Quantum Mechanics and Machine Learning Used To Accurately Predict Chemical Reactions at High Temperatures

Posted by in categories: chemistry, quantum physics, robotics/AI, sustainability

Method combines quantum mechanics with machine learning to accurately predict oxide reactions at high temperatures when no experimental data is available; could be used to design clean carbon-neutral processes for steel production and metal recycling.

Extracting metals from oxides at high temperatures is essential not only for producing metals such as steel but also for recycling. Because current extraction processes are very carbon-intensive, emitting large quantities of greenhouse gases, researchers have been exploring new approaches to developing “greener” processes. This work has been especially challenging to do in the lab because it requires costly reactors. Building and running computer simulations would be an alternative, but currently there is no computational method that can accurately predict oxide reactions at high temperatures when no experimental data is available.

A Columbia Engineering team reports that they have developed a new computation technique that, through combining quantum mechanics and machine learning, can accurately predict the reduction temperature of metal oxides to their base metals. Their approach is computationally as efficient as conventional calculations at zero temperature and, in their tests, more accurate than computationally demanding simulations of temperature effects using quantum chemistry methods. The study, led by Alexander Urban, assistant professor of chemical engineering, was published on December 1, 2021 by Nature Communications.

Dec 24, 2021

Scientists Are Investigating If Time Warps Near a Nuclear Reactor

Posted by in categories: nuclear energy, quantum physics

A team of theoretical physicists at Griffiths University in Australia are investigating a radical quantum theory of time which posits that there is a asymmetry between time and space.

To explain why time points from the past to the future, scientists have proposed that under the second law of thermodynamics, time itself moves towards increased entropy, a measurement of disorder in a system.

Continue reading “Scientists Are Investigating If Time Warps Near a Nuclear Reactor” »

Dec 24, 2021

The quantum mechanics of time travel through post-selected teleportation

Posted by in categories: information science, quantum physics, time travel

This paper discusses the quantum mechanics of closed timelike curves (CTC) and of other potential methods for time travel. We analyze a specific proposal for such quantum time travel, the quantum description of CTCs based on post-selected teleportation (P-CTCs). We compare the theory of P-CTCs to previously proposed quantum theories of time travel: the theory is physically inequivalent to Deutsch’s theory of CTCs, but it is consistent with path-integral approaches (which are the best suited for analyzing quantum field theory in curved spacetime). We derive the dynamical equations that a chronology-respecting system interacting with a CTC will experience. We discuss the possibility of time travel in the absence of general relativistic closed timelike curves, and investigate the implications of P-CTCs for enhancing the power of computation.

Dec 24, 2021

Freaky Physics Proves Parallel Universes Exist

Posted by in categories: cosmology, quantum physics, time travel

Look past the details of a wonky discovery by a group of California scientists — that a quantum state is now observable with the human eye — and consider its implications: Time travel may be feasible. Doc Brown would be proud.

The strange discovery by quantum physicists at the University of California Santa Barbara means that an object you can see in front of you may exist simultaneously in a parallel universe — a multi-state condition that has scientists theorizing that traveling through time may be much more than just the plaything of science fiction writers.

And it’s all because of a tiny bit of metal — a “paddle” about the width of a human hair, an item that is incredibly small but still something you can see with the naked eye.

Dec 24, 2021

Participatory Universe

Posted by in categories: particle physics, quantum physics

John Wheeler, who is mentor to many of today’s leading physicists, and the man who coined the term “black hole”, suggested that the nature of reality was revealed by the bizarre laws of quantum mechanics. According to the quantum theory, before the observation is made, a subatomic particle exists in several states, called a superposition (or, as Wheeler called it, a ‘smoky dragon’). Once the particle is observed, it instantaneously collapses into a single position (a process called ‘decoherence’).

Dec 24, 2021

A new method for testing the performance of quantum computers, designed by Sandia, is faster and more accurate than conventional tests

Posted by in categories: computing, quantum physics

The so-called “mirror-circuit” testing method will help scientists advance the technology behind these super powerful processors. https://bit.ly/3snkgR8

Dec 24, 2021

Entanglement between superconducting qubits and a tardigrade

Posted by in categories: biological, chemistry, quantum physics

Quantum and biological systems are seldom discussed together as they seemingly demand opposing conditions. Life is complex, “hot and wet” whereas quantum objects are small, cold and well controlled. Here, we overcome this barrier with a tardigrade — a microscopic multicellular organism known to tolerate extreme physiochemical conditions via a latent state of life known as cryptobiosis. We observe coupling between the animal in cryptobiosis and a superconducting quantum bit and prepare a highly entangled state between this combined system and another qubit. The tardigrade itself is shown to be entangled with the remaining subsystems. The animal is then observed to return to its active form after 420 hours at sub 10 mK temperatures and pressure of $6\times 10^{-6}$ mbar, setting a new record for the conditions that a complex form of life can survive.