Toggle light / dark theme

The bigger a quantum battery, the faster it charges.

Quantum batteries have the potential to store energy in a new class of compact, powerful devices that could boost our uptake of renewable energies and massively reduce our reliance on fossil fuels.

Now, an international group of scientists has taken an important step towards making these batteries a reality. According to a press statement from the University of Adelaide, the team has proved the crucial concept of superabsorption for the first time.

What is superabsorption? Through a series of lab tests, the team successfully proved the concept of superabsorption, a phenomenon of quantum mechanics with potentially vast implications in the fields of quantum computing and energy storage. Superabsorption, like many other quantum quirks, makes the seemingly impossible possible via subtle manipulation of molecules on the quantum scale.

Full Story:

Chromium defects in silicon carbide may provide a new platform for quantum information.

Quantum computers may be able to solve science problems that are impossible for today’s fastest conventional supercomputers. Quantum sensors may be able to measure signals that cannot be measured by today’s most sensitive sensors. Quantum bits (qubits) are the building blocks for these devices. Scientists are investigating several quantum systems for quantum computing and sensing applications. One system, spin qubits, is based on the control of the orientation of an electron’s spin at the sites of defects in the semiconductor materials that make up qubits. Defects can include small amounts of materials that are different from the main material a semiconductor is made of. Researchers recently demonstrated how to make high quality spin qubits based on chromium defects in silicon carbide.

A new discovery could help scientists to understand “strange metals,” a class of materials that are related to high-temperature superconductors and share fundamental quantum attributes with black holes.

Scientists understand quite well how temperature affects electrical conductance in most everyday metals like copper or silver. But in recent years, researchers have turned their attention to a class of materials that do not seem to follow the traditional electrical rules. Understanding these so-called “strange metals” could provide fundamental insights into the quantum world, and potentially help scientists understand strange phenomena like high-temperature superconductivity.

Now, a research team co-led by a Brown University physicist has added a new discovery to the strange metal mix. In research published in the journal Nature, the team found strange metal behavior in a material in which electrical charge is carried not by electrons, but by more “wave-like” entities called Cooper pairs.

A group of scientists at the U.S. Department of Energy’s Ames Laboratory has developed computational quantum algorithms that are capable of efficient and highly accurate simulations of static and dynamic properties of quantum systems. The algorithms are valuable tools to gain greater insight into the physics and chemistry of complex materials, and they are specifically designed to work on existing and near-future quantum computers.

Scientist Yong-Xin Yao and his research partners at Ames Lab use the power of advanced computers to speed discovery in condensed matter physics, modeling incredibly complex quantum mechanics and how they change over ultra-fast timescales. Current high performance computers can model the properties of very simple, small quantum systems, but larger or more complex systems rapidly expand the number of calculations a computer must perform to arrive at an accurate model, slowing the pace not only of computation, but also discovery.

“This is a real challenge given the current early-stage of existing quantum computing capabilities,” said Yao, “but it is also a very promising opportunity, since these calculations overwhelm classical computer systems, or take far too long to provide timely answers.”

For quantum computers to surpass their classical counterparts in speed and capacity, their qubits—which are superconducting circuits that can exist in an infinite combination of binary states—need to be on the same wavelength. Achieving this, however, has come at the cost of size. Whereas the transistors used in classical computers have been shrunk down to nanometer scales, superconducting qubits these days are still measured in millimeters—one millimeter is one million nanometers.

Combine qubits together into larger and larger circuit chips, and you end up with, relatively speaking, a big physical footprint, which means quantum computers take up a lot of physical space. These are not yet devices we can carry in our backpacks or wear on our wrists.

To shrink qubits down while maintaining their performance, the field needs a new way to build the capacitors that store the energy that “powers” the qubits. In collaboration with Raytheon BBN Technologies, Wang Fong-Jen Professor James Hone’s lab at Columbia Engineering recently demonstrated a superconducting qubit built with 2D materials that’s a fraction of previous sizes.

The center will unite researchers exploring quantum systems and their potential uses.


In the Dr. Allen and Charlotte Ginsburg Center for Quantum Precision Measurement, Caltech researchers will develop tools and concepts with the potential to influence all areas of science and technology through unprecedented sensing, measurement, and engineering capabilities.

The fulcrum of a major initiative in quantum science and technology, the center will unite a diverse community of theorists and experimentalists devoted to understanding quantum systems and their potential uses (see a video about the new center). It will bring together researchers in three fields that progress hand in hand: quantum sensing, quantum information, and gravitational-wave detection—the direct observation of ripples in spacetime.

Sixty-nine percent of global enterprises have already adopted or plan to adopt quantum computing in the near term, according to a new survey of enterprise leaders commissioned by Zapata Computing. The findings suggest that quantum computing is quickly moving from the fringes and becoming a priority for enterprise digital transformation, as 74% of enterprise leaders surveyed agreed that those who fail to adopt quantum computing will fall behind.

Broken down further, 29% of enterprises worldwide are now early adopters of quantum technology, while another 40% plan to follow in their footsteps in the near future. Adoption thus far is highest in the transportation sector, where 63% of respondents reported being in the early stages of quantum adoption. This may be a reaction to the ongoing supply chain crisis, which quantum could help relieve through its potential to solve complex optimization problems common in shipping and logistics.

Among early adopters, 12% expect to achieve a competitive advantage with the technology within one year, while another 41% expect an advantage within two years. The findings suggest confidence among enterprise leaders that quantum computing is no longer a distant reality, but a near-term opportunity. Machine learning in particular was cited as the top near-term use case for quantum computing.

Investigated by the SOAR Telescope operated by NOIRLab, the binary system is the first to be found at the penultimate stage of its evolution. Using the 4.1-meter SOAR Telescope in Chile, astronomers have discovered the first example of a binary system where a star in the process of becoming a white.


MIT physicists and colleagues have discovered the “secret sauce” behind some of the exotic properties of a new quantum material that has transfixed physicists due to those properties, which include superconductivity. Although theorists had predicted the reason for the unusual properties of the material, known as a kagome metal, this is the first time that the phenomenon behind those properties has been observed in the laboratory.

MIT physicists and colleagues have discovered the “secret sauce” behind some of the exotic properties of a new quantum material that has transfixed physicists due to those properties, which include superconductivity. Although theorists had predicted the reason for the unusual properties of the material, known as a kagome metal, this is the first time that the phenomenon behind those properties has been observed in the laboratory.

“The hope is that our new understanding of the electronic structure of a metal will help us build a rich platform for discovering other ,” says Riccardo Comin, the Class of 1947 Career Development Assistant Professor of Physics at MIT, whose group led the study. That, in turn, could lead to a new class of superconductors, new approaches to quantum computing, and other quantum technologies.

The work is reported in the January 13, 2022 online issue of the journal Nature Physics.