Toggle light / dark theme

NASA’s Quantum Sensor Could Revolutionize Gravity Mapping

NASA and partners are building the first quantum gravity sensor for space, a breakthrough instrument that uses ultra-cold atoms to detect tiny shifts in Earth’s gravity from orbit. With potential applications ranging from mapping hidden aquifers to exploring distant planets, this compact, highly

NIST’s Curved Neutron Beams Could Deliver Benefits Straight to Industry

In a physics first, a team including scientists from the National Institute of Standards and Technology (NIST) has created a way to make beams of neutrons travel in curves. These Airy beams (named for English scientist George Airy), which the team created using a custom-built device, could enhance neutrons’ ability to reveal useful information about materials ranging from pharmaceuticals to perfumes to pesticides — in part because the beams can bend around obstacles.

“We’ve known about these strange, self-steering wave patterns for a while, but until now, no one had ever made them with neutrons,” said NIST’s Michael Huber, one of the paper’s authors. “This opens up a whole new way to control neutron beams, which could help us see inside materials or explore some big questions in physics.”

A paper announcing the findings appears today in Physical Review Letters. The team was led by the University at Buffalo’s Dusan Sarenac, and coauthors from the Institute for Quantum Computing (IQC) at the University of Waterloo in Canada built the custom device that helped create the Airy beam. The team also includes scientists from the University of Maryland, Oak Ridge National Laboratory, Switzerland’s Paul Scherrer Institut, and Germany’s Jülich Center for Neutron Science at Heinz Maier-Leibnitz Zentrum.

New type of quantum entanglement discovered that will transform real-world technology

Researchers have long studied quantum entanglement to understand how photons appear to influence each other instantaneously.

This peculiar link first emerged when Albert Einstein pointed to what he called “spooky action at a distance,” suggesting that this peculiar behavior contradicted intuitive views of cause and effect.

The conversation around these phenomena has evolved through the decades.

Scientists discover pioneering technique to accelerate accurate quantum measurements

Researchers have developed a new way to speed up quantum measurements, a vital building block for the next generation of quantum technologies.

Accurate and fast will be crucial for , but are fragile and susceptible to disturbance which can cause errors. Previous work in this area presented a fundamental challenge—scientists were only able to increase the accuracy of measurements in quantum systems by sacrificing speed.

A team of quantum experts, led by the University of Bristol, have struck upon a novel way to overcome this problem, published in a Physical Review Letters journal paper.

Quantum surprise: Matter mediates ultrastrong coupling between light particles

A team of Rice University researchers has developed a new way to control light interactions using a specially engineered structure called a 3D photonic-crystal cavity. Their work, published in the journal Nature Communications, lays the foundation for technologies that could enable transformative advancements in quantum computing, quantum communication and other quantum-based technologies.

“Imagine standing in a room surrounded by mirrors,” said Fuyang Tay, an alumnus of Rice’s Applied Physics Graduate Program and first author of the study. “If you shine a flashlight inside, the light will bounce back and forth, reflecting endlessly. This is similar to how an works—a tailored structure that traps light between reflective surfaces, allowing it to bounce around in specific patterns.”

These patterns with discrete frequencies are called cavity modes, and they can be used to enhance light-matter interactions, making them potentially useful in , developing high-precision lasers and sensors and building better photonic circuits and fiber-optic networks. Optical cavities can be difficult to build, so the most widely used ones have simpler, unidimensional structures.

New quantum ‘game’ showcases the promise of quantum computers

Imagine the tiniest game of checkers in the world—one played by using lasers to precisely shuffle around ions across a very small grid.

That’s the idea behind a recent study published in the journal Physical Review Letters. A team of theoretical physicists from Colorado has designed a new type of quantum “game” that scientists can play on a real quantum computer—or a device that manipulates small objects, such as atoms, to perform calculations.

The researchers even tested their game out on one such device, the Quantinuum System Model H1 Quantum Computer developed by the company Quantinuum. The study is a collaboration between scientists at the University of Colorado Boulder and Quantinuum, which is based in Broomfield, Colorado.

Secrets of superfluid: How dipolar interactions shape two-dimensional superfluid behavior

In a recent study, researchers made a significant observation of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in a 2D dipolar gas of ultracold atoms. This work marks a milestone in understanding how 2D superfluids behave with long-range and anisotropic dipolar interactions. The researchers are an international team of physicists, led by Prof. Jo Gyu-Boong from the Department of Physics at the Hong Kong University of Science and Technology (HKUST).

Their findings are published in the journal Science Advances.

In conventional three-dimensional (3D) systems, , such as ice melting into water, are governed by the spontaneous breakdown of symmetries. However, pioneering work in the 1970s predicted that two-dimensional (2D) systems could host a unique topological phase transition known as the BKT transition, where vortex-antivortex pairs drive superfluidity without conventional symmetry breaking, with interaction playing a crucial role. Since then, this phenomenon had primarily been studied in various quantum systems with only short-range isotropic contact interactions.

Smaller, smarter building blocks for future quantum technology

Scientists at EPFL have made a breakthrough in designing arrays of resonators, the basic components that power quantum technologies. This innovation could create smaller, more precise quantum devices.

Qubits, or , are mostly known for their role in , but they are also used in analog quantum simulation, which uses one well-controlled quantum system to simulate another more complex one. An analog quantum simulator can be more efficient than a digital computer simulation, in the same way that it is simpler to use a to simulate the laws of aerodynamics instead of solving many complicated equations to predict airflow.

Key to both digital quantum computing and analog quantum simulation is the ability to shape the environment with which the qubits are interacting. One tool for doing this effectively is a coupled array (CCA), made of multiple microwave cavities arranged in a repeating pattern where each cavity can interact with its neighbors. These systems can give scientists new ways to design and control quantum systems.