Menu

Blog

Archive for the ‘quantum physics’ category: Page 579

May 7, 2020

Long-lived pionic helium: Exotic matter experimentally verified for the first time

Posted by in categories: chemistry, particle physics, quantum physics

Exotic atoms in which electrons are replaced by other subatomic particles of the same charge allow deep insights into the quantum world. After eight years of ongoing research, a group led by Masaki Hori, senior physicist at the Max Planck Institute of Quantum Optics in Garching, Germany, has now succeeded in a challenging experiment: In a helium atom, they replaced an electron with a pion in a specific quantum state and verified the existence of this long-lived “pionic helium” for the very first time. The usually short-lived pion could thereby exist 1000 times longer than it normally would in other varieties of matter. Pions belong to an important family of particles that determine the stability and decay of atomic nuclei. The pionic helium atom enables scientists to study pions in an extremely precise manner using laser spectroscopy. The research is published in this week’s edition of Nature.

For eight years, the group worked on this challenging experiment, which has the potential to establish a new field of research. The team experimentally demonstrated for the first time that long-lived pionic really exist. “It is a form of chemical reaction that happens automatically,” explains Hori. The exotic atom was first theoretically predicted in 1964 after experiments at that time pointed toward its existence. However, it was considered extremely difficult to verify this prediction experimentally. Usually, in an atom, the extremely short-lived decays quickly. However, in pionic helium, it can be conserved in a sense so it lives 1000 times longer than it normally does in other atoms.

May 7, 2020

Powerful new magnet provides fresh insight into ‘frozen’ quantum materials

Posted by in categories: particle physics, quantum physics

Researchers at the Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) have finished the preliminary commissioning of a new 14-tesla magnet at the Spallation Neutron Source (SNS). This new sample environment allows researchers to explore the fundamental physics behind complex behavior of quantum matter.

The magnet, which also features an optional dilution refrigerator insert, is the latest low-temperature sample to be commissioned at SNS. Weighing 2,670 pounds and standing nearly 7 feet tall, this massive device is an excellent tool for researchers wanting to learn more about materials that exhibit quantum phenomena. Its powerful magnetic field forces quantum particles to behave in an orderly way, giving scientists the opportunity to locate patterns in otherwise disordered . And with its refrigerator—which can chill samples to −459.65° F—scientists can essentially “freeze” molecular vibrations in materials that might appear as background noise in neutron scattering studies. This allows for more accurate measurements of the excitations associated with quantum magnets.

“Quantum systems often lack discernible order. This makes it difficult to understand their fundamental characteristics. This new sample environment lets us bring order to these systems we’re interested in studying,” said Matt Stone, a lead instrument scientist at ORNL.

May 7, 2020

Intro to Quantum Computing

Posted by in categories: computing, encryption, quantum physics

Quantum computing is seen by many as a technology of the future. In this article, we’re going to look at how to run some non-trivial programs on actual quantum computers. In particular, we’re going to discuss something called graph states. Graph states are used for quantum cryptography, quantum error correction, and measurement based quantum computing. If all of that sounds like a foreign language, that’s okay. We’re going to go through everything, from the ground up, and in detail…and don’t worry, we’ll keep it light and fun.

May 7, 2020

A Discovery That Long Eluded Physicists: Superconductivity to the Edge

Posted by in categories: computing, quantum physics

Princeton researchers detect a supercurrent a current flowing without energy loss at the edge of a superconductor with a topological twist.

A discovery that long eluded physicists has been detected in a laboratory at Princeton. A team of physicists detected superconducting currents — the flow of electrons without wasting energy — along the exterior edge of a superconducting material. The finding was published May 1 in the journal Science.

The superconductor that the researchers studied is also a topological semi-metal, a material that comes with its own unusual electronic properties. The finding suggests ways to unlock a new era of “topological superconductivity” that could have value for quantum computing.

May 5, 2020

NASA tested an ‘impossible’ engine

Posted by in categories: quantum physics, space travel

Circa 2016


Researchers say the new ‘impossible’ drive could carry passengers and their equipment to the moon in as little as four hours.

Continue reading “NASA tested an ‘impossible’ engine” »

May 5, 2020

Scientists produce a magnetic nanocrystal with many potential applications

Posted by in categories: chemistry, computing, nanotechnology, quantum physics

Spinels are oxides with chemical formulas of the type AB2O4, where A is a divalent metal cation (positive ion), B is a trivalent metal cation, and O is oxygen. Spinels are valued for their beauty, which derives from the molecules’ spatial configurations, but spinels in which the trivalent cation B consists of the element chrome (Cr) are interesting for a reason that has nothing to do with aesthetics: They have magnetic properties with an abundance of potential technological applications, including gas sensors, drug carriers, data storage media, and components of telecommunications systems.

A study by Brazilian and Indian researchers investigated a peculiar kind of spinel: zinc-doped manganese chromite. Nanoparticles of this material, described by the formula Mn0.5 Zn0.5 Cr2O4 [where manganese (Mn) and zinc (Zn) compose the A-site divalent cation], were synthesized in the laboratory and characterized by calculations based on density functional theory (DFT), a method derived from that is used in solid-state physics and chemistry to resolve complex crystal structures.

The material’s structural, electronic, vibrational and were determined by X-ray diffraction, neutron diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. A report of the study has been published in the Journal of Magnetism and Magnetic Materials with the title “Structural, electronic, vibrational and magnetic properties of Zn2+ substituted MnCr2O4 nanoparticles.”

May 5, 2020

The subatomic age: Asia’s quantum computing arms race

Posted by in categories: computing, quantum physics

Huawei and Alibaba among tech giants pouring money into development.

PETER GUEST, Nikkei staff writer May 05, 2020 13:05 JST.

May 4, 2020

To make an atom-sized machine, you need a quantum mechanic

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Here’s a new chapter in the story of the miniaturisation of machines: researchers in a laboratory in Singapore have shown that a single atom can function as either an engine or a fridge. Such a device could be engineered into future computers and fuel cells to control energy flows.

“Think about how your computer or laptop has a lot of things inside it that heat up. Today you cool that with a fan that blows air. In nanomachines or quantum computers, small devices that do cooling could be something useful,” says Dario Poletti from the Singapore University of Technology and Design (SUTD).

This work gives new insight into the mechanics of such devices. The work is a collaboration involving researchers at the Centre for Quantum Technologies (CQT) and Department of Physics at the National University of Singapore (NUS), SUTD and at the University of Augsburg in Germany. The results were published in the peer-reviewed journal npj Quantum Information on 1 May.

May 2, 2020

Does Consciousness Influence Quantum Mechanics?

Posted by in categories: information science, particle physics, quantum physics

Education Saturday with Space Time.


It’s not surprising that the profound weirdness of the quantum world has inspired some outlandish explanations – nor that these have strayed into the realm of what we might call mysticism. One particularly pervasive notion is the idea that consciousness can directly influence quantum systems – and so influence reality. Today we’re going to see where this idea comes from, and whether quantum theory really supports it.

Continue reading “Does Consciousness Influence Quantum Mechanics?” »

May 2, 2020

Could Photonic Chips Outpace the Fastest Supercomputers?

Posted by in categories: encryption, quantum physics, robotics/AI, supercomputing

There’s been a lot of talk about quantum computers being able to solve far more complex problems than conventional supercomputers. The authors of a new paper say they’re on the pat h to showing an optical computer c an do so, too.

The idea of using light to carry out computing has a long pedigree, and it has gained traction in recent years with the advent of silicon photonics, which makes it possible to build optical circuits using the same underlying technology used for electronics. The technology s hows particular promise for accelerating deep learning, and is being actively pursued by Intel and a number of startups.

Now Chinese researchers have put a photonic chip t o work tackling a fiendishly complex computer science challenge called the s ubset sum problem in a paper in Science Advances. It ha s some potential applications in cryptography and resource allocation, but primarily it’s used as a benchmark to test the limits of computing.