Menu

Blog

Archive for the ‘quantum physics’ category: Page 590

Mar 1, 2020

Helical quantum Hall phase in graphene on strontium titanate

Posted by in categories: particle physics, quantum physics

Materials that exhibit topological phases can be classified by their dimensionality, symmetries and topological invariants to form conductive-edge states with peculiar transport and spin properties. For example, the quantum Hall effect can arise in two-dimensional (2-D) electron systems subjected to a perpendicular magnetic field. When distinct characteristics of quantum Hall systems are compared with time-reversal symmetric (entropy conserved) topological insulators (TIs), they appear to rely on Coulomb interactions between electrons to induce a wealth of strongly correlated, topologically or symmetry-projected phases in a variety of experimental systems.

In a new report now on Science, Louis Veyrat and a research team in materials science, and optoelectronics in France, China and Japan tuned the ground state of the graphene zeroth Landau level i.e. orbitals occupied by charged particles with discrete energy values. Using suitable screening of the Coulomb interaction with the high dielectric constant of a strontium titanate (SrTiO3) substrate, they observed robust helical edge transport at magnetic fields as low as 1 Tesla, withstanding temperatures of up to 110 kelvin across micron-long distances. These versatile graphene platforms will have applications in spintronics and topological quantum computation.

Topological insulators (TIs), i.e., a material that behaves as an insulator in its interior but retains a conducting surface state, with zero Chern number have emerged as quantum Hall (QHTIs) arising from many-body interacting Landau levels. They can be pictured as two independent copies of quantum Hall systems with opposite chirality, but the experimental system is at odds with the described scenario, where a strong insulating state is observed on increasing the perpendicular in charge-neutral, high-mobility graphene devices.

Feb 29, 2020

Parallel universes exist and we will soon explore them, physicist says

Posted by in categories: cosmology, particle physics, quantum physics

At a quantum level, the vanishingly tiny particles that make up the building blocks of everything don’t even have a set location, just a smear of possible positions dictated by complex rules of probability.

And theoretical physicist Sean Carroll is entirely happy with that. He says that the fact that tiny particles like electrons and photons don’t have one set place in the universe is evidence that there are many parallel universes.

Feb 28, 2020

Witnessing the birth of baby universes 46 times: The link between gravity and soliton

Posted by in categories: information science, quantum physics

Scientists have been attempting to come up with an equation to unify the micro and macro laws of the Universe; quantum mechanics and gravity. We are one step closer with a paper that demonstrates that this unification is successfully realized in JT gravity. In the simplified toy model of the one dimensional domain, the holographic principle, or how information is stored on a boundary that manifests in another dimension is revealed.

How did the universe begin? How does quantum mechanics, the study of the smallest things, relate to gravity and the study of big things? These are some of the questions physicists have been working to solve ever since Einstein released his theory of relativity.

Formulas show that baby universes pops in and out of the main Universe. However, we don’t realize or experience this as humans. To calculate how this scales, devised the so-called JT gravity, which turns the into a toy-like model with only one dimension of time or space. These restricted parameters allows for a model in which scientists can test their theories.

Feb 27, 2020

Wormholes Reveal a Way to Manipulate Black Hole Information in the Lab

Posted by in categories: cosmology, quantum physics

A proposal for building wormhole-connected black holes offers a way to probe the paradoxes of quantum information.

Feb 27, 2020

Quantum researchers able to split one photon into three

Posted by in categories: computing, quantum physics

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo report the first occurrence of directly splitting one photon into three.

The occurrence, the first of its kind, used the spontaneous parametric down-conversion method (SPDC) in quantum optics and created what quantum optics researchers call a non-Gaussian state of light. A non-Gaussian state of light is considered a critical ingredient to gain a quantum advantage.

“It was understood that there were limits to the type of entanglement generated with the two-photon version, but these results form the basis of an exciting new paradigm of three-photon ,” said Chris Wilson, a principle investigator at IQC faculty member and a professor of Electrical and Computer Engineering at Waterloo.

Feb 26, 2020

D-Wave launches Leap 2, the next version of its quantum cloud service

Posted by in category: quantum physics

D-Wave today announced the launch of Leap 2, the latest version of its quantum cloud service that gives developers real-time access to its hardware quantum systems.

As the company notes, Leap 2 was built with the feedback of thousands of developers in mind who used the previous generation of the service since it launched 18 months ago.

At the core of Leap 2 is D-Wave’s new hybrid solver that can handle complex problems with up to 10,000 variables. As a hybrid system, D-Wave uses both classical and quantum hardware to solve these problems.

Feb 26, 2020

The Future is Faster Than You Think: An Interview with Peter Diamandis

Posted by in categories: Peter Diamandis, quantum physics, robotics/AI, transportation, virtual reality

Do you àgree?


In Peter Diamandis and Steven Kotler’s new book, The Future Is Faster Than You Think, the futurist and science writer talk about converge and how a host of technologies, including VR, quantum computing, and A.I., are speeding up development of flying cars and changing new and old industries.

Feb 25, 2020

Are We All Subjectively Immortal?

Posted by in categories: life extension, quantum physics

O.o woah!


When we’re watching an action movie, we might think that we’re watching main characters through a bunch of explosions to an improbable happy ending, but it’s just as accurate to say that we’re watching the ‘Quantum Immortality Hypothesis’ illustrated over and over again.

Feb 25, 2020

Cooling of a trapped ion to the quantum regime

Posted by in categories: particle physics, quantum physics

Neutral atoms and charged ions can be cooled down to extremely low temperatures (i.e., to microkelvins, 1 millionth of a degree above absolute zero) using laser techniques. At these low temperatures, the particles have often been found to behave in accordance with the laws of quantum mechanics.

Researchers have been conducting laser cooling experiments on and ions for decades now. So far, however, no study had observed mixtures of both atoms and ions at extremely low temperatures.

Researchers at the University of Amsterdam were the first to achieve this by placing an ion inside a cloud of lithium atoms pre-cooled to a few millionths of a kelvin. Their observations, published in Nature Physics, unveiled numerous effects that could have interesting implications for the development of new quantum technologies.

Feb 25, 2020

Physicists Foretell Quantum Computer With Single-Atom Transistor

Posted by in categories: computing, particle physics, quantum physics

Physicists at Purdue University and the University of New South Wales have built a transistor from a single atom of phosphorous precisely placed on a bed of silicon, taking another step towards the holy grail of tech research: the quantum computer.

Revealed on Sunday in the academic journal Nature Nanotechnology, the research is part of a decade-long effort at the University of New South Wales to deliver a quantum computer – a machine that would use the seemingly magical properties of very small particles to instantly perform calculations beyond the scope of today’s classical computers.

Continue reading “Physicists Foretell Quantum Computer With Single-Atom Transistor” »