Menu

Blog

Archive for the ‘quantum physics’ category: Page 655

Apr 17, 2019

New phonon laser could lead to breakthroughs in sensing and information processing

Posted by in categories: energy, nanotechnology, quantum physics

The optical laser has grown to a $10 billion global technology market since it was invented in 1960, and has led to Nobel prizes for Art Ashkin for developing optical tweezing and Gerard Mourou and Donna Strickland for work with pulsed lasers. Now a Rochester Institute of Technology researcher has teamed up with experts at the University of Rochester to create a different kind of laser—a laser for sound, using the optical tweezer technique invented by Ashkin.

In the newest issue of Nature Photonics, the researchers propose and demonstrate a phonon using an optically levitated nanoparticle. A phonon is a quantum of energy associated with a and test the limits of quantum effects in isolation and eliminates physical disturbances from the surrounding environment. The researchers studied the mechanical vibrations of the nanoparticle, which is levitated against gravity by the force of radiation at the focus of an beam.

“Measuring the position of the nanoparticle by detecting the it scatters, and feeding that information back into the tweezer beam allows us to create a laser-like situation,” said Mishkat Bhattacharya, associate professor of physics at RIT and a theoretical quantum optics researcher. “The mechanical vibrations become intense and fall into perfect sync, just like the electromagnetic waves emerging from an optical laser.”

Continue reading “New phonon laser could lead to breakthroughs in sensing and information processing” »

Apr 17, 2019

Qualcomm Aims for Quantum AI Chips

Posted by in categories: information science, quantum physics, robotics/AI

Qualcomm said it plans to begin testing its new Cloud AI 100 chip with partners such as Microsoft Corp later this year, with mass production likely to begin in 2020.

Qualcomm’s new chip is designed for what artificial intelligence researchers call “inference” – the process of using an AI algorithm that has been “trained” with massive amounts of data in order to, for example, translate audio into text-based requests.

Analysts believe chips for speeding up inference will be the largest part of the AI chip market.

Continue reading “Qualcomm Aims for Quantum AI Chips” »

Apr 15, 2019

Quantum entangled batteries could be the perfect power source

Posted by in categories: energy, quantum physics

Two European theoretical physicists have shown that it may be possible to build a near-perfect, entangled quantum battery. In the future, such quantum batteries might power the tiniest of devices — or provide power storage that is much more efficient than state-of-the-art lithium-ion battery packs.

To understand the concept of quantum batteries, we need to start (unsurprisingly) at a very low level. Today, most devices and machines that you interact with are governed by the rules of classical mechanics (Newton’s laws, friction, and so on). Classical mechanics are very accurate for larger systems, but they fall apart as we begin to analyze microscopic (atomic and sub-atomic) systems — which led to a new set of laws and theories that describe quantum mechanics.

In recent years, as our ability to observe and manipulate quantum systems has grown — thanks to machines such as the Large Hadron Collider and scanning tunneling electron microscopes — physicists have started theorizing about devices and machines that use quantum mechanics, rather than classical. In theory, these devices could be much smaller, more efficient, or simply act in rather unsurprising ways. In this case, Robert Alicki of the University of Gdansk in Poland, and Mark Fannes of the University of Leuven in Belgium, have defined a battery that stores and releases energy using quantum mechanics.

Continue reading “Quantum entangled batteries could be the perfect power source” »

Apr 12, 2019

Fluc­tu­a­tions in the void

Posted by in categories: particle physics, quantum physics

In quantum physics, a vacuum is not empty, but rather steeped in tiny fluctuations of the electromagnetic field. Until recently it was impossible to study those vacuum fluctuations directly. Researchers at ETH Zurich have developed a method that allows them to characterize the fluctuations in detail.

Emptiness is not really empty – not according to the laws of , at any rate. The vacuum, in which classically there is supposed to be “nothing,” teems with so-called according to quantum mechanics. Those are small excursions of an electromagnetic field, for instance, that average out to zero over time but can deviate from it for a brief moment. Jérôme Faist, professor at the Institute for Quantum Electronics at ETH in Zurich, and his collaborators have now succeeded in characterizing those vacuum fluctuations directly for the first time.

“The vacuum fluctuations of the electromagnetic field have clearly visible consequences, and among other things, are responsible for the fact that an atom can spontaneously emit ,” explains Ileana-Cristina Benea-Chelmus, a recently graduated Ph.D. student in Faists laboratory and first author of the study recently published in the scientific journal Nature. “To measure them directly, however, seems impossible at first sight. Traditional detectors for light such as photodiodes are based on the principle that light particles – and hence energy – are absorbed by the detector. However, from the vacuum, which represents the lowest energy state of a physical system, no further energy can be extracted.”

Continue reading “Fluc­tu­a­tions in the void” »

Apr 11, 2019

Team makes artificial atoms that work at room temp

Posted by in categories: computing, particle physics, quantum physics

Ultra-secure online communications, completely indecipherable if intercepted, is one step closer with the help of a recently published discovery by University of Oregon physicist Ben Alemán.

Alemán, a member of the UO’s Center for Optical, Molecular, and Quantum Science, has made artificial atoms that work in ambient conditions. The research, published in the journal Nano Letters, could be a big step in efforts to develop secure communication networks and all-optical quantum computing.

“The big breakthrough is that we’ve discovered a simple, scalable way to nanofabricate artificial atoms onto a microchip, and that the artificial atoms work in air and at ,” said Alemán, also a member of the UO’s Materials Science Institute.

Continue reading “Team makes artificial atoms that work at room temp” »

Apr 11, 2019

Infinite number of quantum particles gives clues to big-picture behavior at large scale

Posted by in categories: particle physics, quantum physics

In quantum mechanics, the Heisenberg uncertainty principle prevents an external observer from measuring both the position and speed (referred to as momentum) of a particle at the same time. They can only know with a high degree of certainty either one or the other—unlike what happens at large scales where both are known. To identify a given particle’s characteristics, physicists introduced the notion of quasi-distribution of position and momentum. This approach was an attempt to reconcile quantum-scale interpretation of what is happening in particles with the standard approach used to understand motion at normal scale, a field dubbed classical mechanics.

In a new study published in EPJ ST, Dr. J.S. Ben-Benjamin and colleagues from Texas A&M University, USA, reverse this approach; starting with quantum mechanical rules, they explore how to derive an infinite number of quasi-distributions, to emulate the approach. This approach is also applicable to a number of other variables found in quantum-scale particles, including particle spin.

For example, such quasi-distributions of position and momentum can be used to calculate the quantum version of the characteristics of a gas, referred to as the second virial coefficient, and extend it to derive an infinite number of these quasi-distributions, so as to check whether it matches the traditional expression of this physical entity as a joint distribution of position and momentum in classical mechanics.

Continue reading “Infinite number of quantum particles gives clues to big-picture behavior at large scale” »

Apr 11, 2019

Scientists Say New Quantum Material Could “‘Download’ Your Brain”

Posted by in categories: computing, health, neuroscience, quantum physics

Scientists say they’ve developed a new “quantum material” that could one day transfer information directly from human brains to a computer.

The research is in early stages, but it invokes ideas like uploading brains to the cloud or hooking people up to a computer to track deep health metrics — concepts that until now existed solely in science fiction.

Read more

Apr 10, 2019

New algorithm optimizes quantum computing problem-solving

Posted by in categories: business, computing, information science, particle physics, quantum physics

Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports.

Quantum computing takes advantage of the ability of subatomic particles to exist in more than one state at the same time. It is expected to take modern-day computing to the next level by enabling the processing of more information in less time.

The D-Wave annealer, developed by a Canadian company that claims it sells the world’s first commercially available quantum computers, employs the concepts of quantum physics to solve ‘combinatorial optimization .’ A typical example of this sort of problem asks the question: “Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each and returns to the original city?” Businesses and industries face a large range of similarly complex problems in which they want to find the optimal solution among many possible ones using the least amount of resources.

Continue reading “New algorithm optimizes quantum computing problem-solving” »

Apr 9, 2019

Scientists build a machine to generate quantum superposition of possible futures

Posted by in categories: computing, information science, particle physics, quantum physics

In the 2018 movie Avengers: Infinity War, a scene featured Dr. Strange looking into 14 million possible futures to search for a single timeline in which the heroes would be victorious. Perhaps he would have had an easier time with help from a quantum computer. A team of researchers from Nanyang Technological University, Singapore (NTU Singapore) and Griffith University in Australia have constructed a prototype quantum device that can generate all possible futures in a simultaneous quantum superposition.

“When we think about the future, we are confronted by a vast array of possibilities,” explains Assistant Professor Mile Gu of NTU Singapore, who led development of the algorithm that underpins the prototype “These possibilities grow exponentially as we go deeper into the future. For instance, even if we have only two possibilities to choose from each minute, in less than half an hour there are 14 million possible futures. In less than a day, the number exceeds the number of atoms in the universe.” What he and his research group realised, however, was that a quantum computer can examine all possible futures by placing them in a – similar to Schrödinger’s famous cat, which is simultaneously alive and dead.

To realise this scheme, they joined forces with the experimental group led by Professor Geoff Pryde at Griffith University. Together, the team implemented a specially devised photonic quantum information processor in which the potential future outcomes of a decision process are represented by the locations of photons – quantum of light. They then demonstrated that the state of the quantum device was a superposition of multiple potential futures, weighted by their probability of occurrence.

Continue reading “Scientists build a machine to generate quantum superposition of possible futures” »

Apr 9, 2019

Research team expands quantum network with successful long-distance entanglement experiment

Posted by in categories: computing, particle physics, quantum physics

Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory, Stony Brook University, and DOE’s Energy Sciences Network (ESnet) are collaborating on an experiment that puts U.S. quantum networking research on the international map. Researchers have built a quantum network testbed that connects several buildings on the Brookhaven Lab campus using unique portable quantum entanglement sources and an existing DOE ESnet communications fiber network—a significant step in building a large-scale quantum network that can transmit information over long distances.

“In , the physical properties of entangled particles remain associated, even when separated by vast distances. Thus, when measurements are performed on one side, it also affects the other,” said Kerstin Kleese van Dam, director of Brookhaven Lab’s Computational Science Initiative (CSI). “To date, this work has been successfully demonstrated with entangled photons separated by approximately 11 miles. This is one of the largest quantum entanglement distribution networks in the world, and the longest-distance entanglement experiment in the United States.”

This quantum networking testbed project includes staff from CSI and Brookhaven’s Instrumentation Division and Physics Department, as well as faculty and students from Stony Brook University. The project also is part of the Northeast Quantum Systems Center. One distinct aspect of the team’s work that sets it apart from other quantum networks being run in China and Europe—both long-committed to quantum information science pursuits—is that the entanglement sources are portable and can be easily mounted in standard data center computer server racks that are connected to regular fiber distribution panels.

Continue reading “Research team expands quantum network with successful long-distance entanglement experiment” »