Menu

Blog

Archive for the ‘quantum physics’ category: Page 676

Apr 14, 2018

A Spooky Quantum Experiment Creates What May Be the Most Entangled Controllable Device Yet

Posted by in categories: cybercrime/malcode, particle physics, quantum physics, robotics/AI

If you’ve read anything about quantum computers, you may have encountered the statement, “It’s like computing with zero and one at the same time.” That’s sort of true, but what makes quantum computers exciting is something spookier: entanglement.

A new quantum device entangles 20 quantum bits together at the same time, making it perhaps one of the most entangled, controllable devices yet. This is an important milestone in the quantum computing world, but it also shows just how much more work there is left to do before we can realize the general-purpose quantum computers of the future, which will be able to solve big problems relating to AI and cybersecurity that classical computers can’t.

“We’re now getting access to single-particle-control devices” with tens of qubits, study author Ben Lanyon from the Institute for Quantum Optics and Quantum Information in Austria told Gizmodo. Soon, “we can get to the level where we can create super-exotic quantum states and see how they behave in the lab. I think that’s very exciting.”

Continue reading “A Spooky Quantum Experiment Creates What May Be the Most Entangled Controllable Device Yet” »

Apr 14, 2018

How quantum computing could wreak havoc on cryptocurrency

Posted by in categories: computing, cryptocurrencies, quantum physics

Quantum computing is promising to be one of the biggest technological revolutions of the modern era.

By harnessing the power of quantum mechanics, machines will be able to achieve data processing of speed and complexity unattainable with current computers. Traditional computers are based on a binary model on a system of switches that can be either on or off, represented with a 1 or a 0.

Quantum computers are different in that their switches can be in both the on and off positions at the same time, called ‘superpositions.’ This ability to be in two simultaneous states is what makes quantum computers faster. Much faster.

Continue reading “How quantum computing could wreak havoc on cryptocurrency” »

Apr 14, 2018

If You Thought Quantum Mechanics Was Weird, Check Out Entangled Time

Posted by in categories: particle physics, quantum physics

In the summer of 1935, the physicists Albert Einstein and Erwin Schrödinger engaged in a rich, multifaceted and sometimes fretful correspondence about the implications of the new theory of quantum mechanics.

The focus of their worry was what Schrödinger later dubbed entanglement: the inability to describe two quantum systems or particles independently, after they have interacted.

Until his death, Einstein remained convinced that entanglement showed how quantum mechanics was incomplete. Schrödinger thought that entanglement was the defining feature of the new physics, but this didn’t mean that he accepted it lightly.

Continue reading “If You Thought Quantum Mechanics Was Weird, Check Out Entangled Time” »

Apr 14, 2018

Einstein’s ‘Dice of God’ Has Been Used to Generate Truly Random Numbers

Posted by in categories: encryption, quantum physics

Locking up super-secret information with digital encryption has become even more secure with the production of numbers that aren’t just ‘nearly random’, but are truly unpredictable in every sense of the word.

Using the data generated by a three-year-old experiment on quantum entanglement, the US National Institute of Standards and Technology (NIST) recently generated codes that are guaranteed to be one of a kind, and it could set a new landmark in communications.

On one level, randomness is an easy thing to grasp. We flip coins, roll dice, and pick cards with a basic sense that the outcome can’t be easily predicted.

Continue reading “Einstein’s ‘Dice of God’ Has Been Used to Generate Truly Random Numbers” »

Apr 13, 2018

Wormhole Entanglement and the Firewall Paradox

Posted by in categories: cosmology, quantum physics

A bold new idea aims to link two famously discordant descriptions of nature. In doing so, it may also reveal how space-time owes its existence to the spooky connections of quantum information.

Read more

Apr 12, 2018

Making custom qubits

Posted by in categories: computing, particle physics, quantum physics

For the first time, we’ve made a molecule by pressing two atoms together to make them bond on command. This could help build better qubits for quantum computers.

Read more

Apr 11, 2018

An Invisibility Cloak That Uses Quantum Stealth

Posted by in category: quantum physics

Using quantum stealth, the technology provides complete imperceptibility across the visible, infrared, and ultraviolet spectrum by bending light around objects.

Read more

Apr 10, 2018

If You Thought Quantum Mechanics Was Weird, Wait Till You Hear About Entangled Time

Posted by in categories: particle physics, quantum physics

In the summer of 1935, the physicists Albert Einstein and Erwin Schrödinger engaged in a rich, multifaceted and sometimes fretful correspondence about the implications of the new theory of quantum mechanics. The focus of their worry was what Schrödinger later dubbed entanglement: the inability to describe two quantum systems or particles independently, after they have interacted.

Until his death, Einstein remained convinced that entanglement showed how quantum mechanics was incomplete. Schrödinger thought that entanglement was the defining feature of the new physics, but this didn’t mean that he accepted it lightly. “I know of course how the hocus pocus works mathematically,” he wrote to Einstein on July 13, 1935. “But I do not like such a theory.” Schrödinger’s famous cat, suspended between life and death, first appeared in these letters, a byproduct of the struggle to articulate what bothered the pair.

The problem is that entanglement violates how the world ought to work. Information can’t travel faster than the speed of light, for one. But in a 1935 paper, Einstein and his co-authors showed how entanglement leads to what’s now called quantum nonlocality, the eerie link that appears to exist between entangled particles. If two quantum systems meet and then separate, even across a distance of thousands of lightyears, it becomes impossible to measure the features of one system (such as its position, momentum and polarity) without instantly steering the other into a corresponding state.

Read more

Apr 7, 2018

Blue Sky Science: Are there wormholes that lead to other galaxies?

Posted by in categories: cosmology, particle physics, quantum physics, science

In principle, a wormhole-like scenario is possible, but a wormhole tends to close before objects or other matter could pass through it. As far as we know, it’s unlikely we could construct a wormhole that stays open long enough for us to get to a distant part of the universe.

That’s really the issue: Can you keep a wormhole open?

Continue reading “Blue Sky Science: Are there wormholes that lead to other galaxies?” »

Apr 4, 2018

A second ‘Big Bang’ could end our universe in an instant — and it’s all because of a tiny particle that controls the laws of physics

Posted by in categories: chemistry, cosmology, particle physics, quantum physics

Our known universe may end the same way it was created: With a big, sudden bang.

That’s according to new research from a group of Harvard physicists, who found that the destabilization of the Higgs Boson — a tiny quantum particle that gives other particles mass — could lead to a huge explosion of energy that would consume everything in the known universe.

The energy released by the event would destabilize the laws of physics and chemistry.

Continue reading “A second ‘Big Bang’ could end our universe in an instant — and it’s all because of a tiny particle that controls the laws of physics” »