Menu

Blog

Archive for the ‘quantum physics’ category: Page 692

Sep 7, 2017

This New Proof of Majorana Fermions Is Going to Be Massive For Quantum Devices

Posted by in categories: computing, particle physics, quantum physics

Quantum computers based on the twisting pathways of moving particles have so far lived only in theory – the particles they would rely on might not even exist.

But with the exciting discovery of electrons ‘swirling’ down a wire, the hunt is over for exactly the particles such quantum devices have been waiting for. Now the work of turning these theoretical computers into reality could soon be underway.

Researchers from the University of Sydney and Microsoft have observed electrons forming a kind of matter called a quasiparticle under conditions that saw them behave as theoretical objects called Majorana fermions.

Continue reading “This New Proof of Majorana Fermions Is Going to Be Massive For Quantum Devices” »

Sep 6, 2017

Breaking: An Entirely New Type of Quantum Computing Has Been Invented

Posted by in categories: computing, quantum physics

Australian researchers have designed a new type of qubit — the building block of quantum computers — that they say will finally make it possible to manufacture a true, large-scale quantum computer. Broadly speaking, there are currently a number of ways to make a quantum computer. Some take up less space, but tend to be incredibly complex. Others are simpler, but if you want it to scale up you’re going to need to knock down a few walls.

Read more

Sep 6, 2017

Australia researchers say find new way to build quantum computers

Posted by in categories: computing, particle physics, quantum physics

SINGAPORE (Reuters) — Researchers in Australia have found a new way to build quantum computers which they say would make them dramatically easier and cheaper to produce at scale.

Quantum computers promise to harness the strange ability of subatomic particles to exist in more than one state at a time to solve problems that are too complex or time-consuming for existing computers.

Google, IBM and other technology companies are all developing quantum computers, using a range of approaches.

Continue reading “Australia researchers say find new way to build quantum computers” »

Sep 4, 2017

3 of Nature’s Greatest Mysteries May Be Solved Thanks to Quantum Biology

Posted by in categories: biological, quantum physics

Turns out, organisms may be using quantum mechanics to gain evolutionary advantages.

Read more

Sep 4, 2017

Entanglement is an inevitable feature of reality

Posted by in category: quantum physics

(Phys.org)—Is entanglement really necessary for describing the physical world, or is it possible to have some post-quantum theory without entanglement?

In a new study, physicists have mathematically proved that any that has a classical limit—meaning that it can describe our observations of the by recovering classical theory under certain conditions—must contain entanglement. So despite the fact that entanglement goes against classical intuition, entanglement must be an inevitable feature of not only quantum theory but also any non-classical theory, even those that are yet to be developed.

The physicists, Jonathan G. Richens at Imperial College London and University College London, John H. Selby at Imperial College London and the University of Oxford, and Sabri W. Al-Safi at Nottingham Trent University, have published a paper establishing entanglement as a necessary feature of any non-classical theory in a recent issue of Physical Review Letters.

Continue reading “Entanglement is an inevitable feature of reality” »

Sep 2, 2017

We’re About to Cross The ‘Quantum Supremacy’ Limit in Computing

Posted by in categories: computing, particle physics, quantum physics

The 4th International Conference on Quantum Technologies held in Moscow last month was supposed to put the spotlight on Google, who were preparing to give a lecture on a 49-qubit quantum computer they have in the works.

A morning talk presented by Harvard University’s Mikhail Lukin, however, upstaged that evening’s event with a small announcement of his own – his team of American and Russian researchers had successfully tested a 51-qubit device, setting a landmark in the race for quantum supremacy.

Quantum computers are considered to be part of the next generation in revolutionary technology; devices that make use of the odd ‘in-between’ states of quantum particles to accelerate the processing power of digital machines.

Continue reading “We’re About to Cross The ‘Quantum Supremacy’ Limit in Computing” »

Aug 29, 2017

Russians Lead the Quantum Computer Race With 51-Qubit Machine

Posted by in categories: computing, quantum physics

Russian scientists collaborating with an international team presented their 51-qubit quantum computer processor to the ICQT 2017 in Moscow.

Read more

Aug 26, 2017

Scientists Finally Prove Strange Quantum Physics Idea Einstein Hated

Posted by in categories: information science, mathematics, particle physics, quantum physics, space

The equations of physics are things that we humans created to understand the Universe, and it can be hard to disentangle them from the Universe’s innate properties. It turns out that one of the weirdest things scientists have come up with, what Albert Einstein derisively called “spooky action at a distance,” is more than just math: It’s a fact of reality.

That concept is also known as entanglement, and it’s what allows particles that have once interacted to share a connection regardless of the separation between them. A team of physicists in the United Kingdom used some dense mathematics to come to their Einstein-angering conclusion, taking an important step towards proving whether quantum mechanics’ weirdness is just the math talking, or whether it speaks to innate physical requirements. Their mathematical proof’s main assumption is that any new physics theory should be backward-compatible with the physics you learned in high school.

Read more

Aug 25, 2017

This Small Quantum-Computing Firm Wants to Supercharge AI Startups

Posted by in categories: business, chemistry, quantum physics, robotics/AI

Berkeley-based quantum computing firm Rigetti will allow 40 machine learning startups from 11 countries to make use of its devices to help crunch their AI problems.

Rigetti is small compared to its main rivals—the likes of Google, IBM, and Intel. But as we’ve reported in the past, the firm is working on a complex chip architecture that promises to scale up well, and should be particularly suited to applications like machine learning and chemistry simulations. That’s why we made it one of our 50 Smartest Companies of 2017.

But, like IBM and Google, part of Rigetti’s business model has always been to develop a kind of quantum-powered cloud service that would allow people to make use of its technology remotely. The newly announced partnership—which will be with companies from Creative Destruction Lab, a Canadian incubator that focuses on science-based startups—is a chance to test that theory out using Rigetti’s Forest programming environment.

Continue reading “This Small Quantum-Computing Firm Wants to Supercharge AI Startups” »

Aug 24, 2017

Hyperentanglement across roof tops paves the way toward a global quantum Internet

Posted by in categories: internet, quantum physics, satellites

(Phys.org)—For the first time, physicists have demonstrated that hyperentangled photons can be transmitted in free space, which they showed by sending many thousands of these photons between the rooftops of two buildings in Vienna. Hyperentanglement means that the photons are simultaneously entangled in at least two different properties—in this experiment, the researchers combined two two-dimensionally entangled properties to achieve four-dimensional hyperentanglement.

By showing that hyperentanglement transmission is feasible in the real world and not only in the lab, the physicists expect that the demonstration could one day be scaled up to establish a highly secure quantum Internet that uses satellites to quickly and securely transmit across the globe.

The physicists, led by Rupert Ursin at the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences in Vienna, have published a paper on the distribution of hyperentanglement via atmospheric free-space links in a recent issue of Nature Communications.

Continue reading “Hyperentanglement across roof tops paves the way toward a global quantum Internet” »