Menu

Blog

Archive for the ‘quantum physics’ category: Page 708

Feb 10, 2017

Crystals for Superconduction, Quantum Computing and High Efficiency Solar Cells

Posted by in categories: chemistry, computing, quantum physics, solar power, sustainability

Nice forum on QC Crystal Superconduction in Mar.


From March 8–10, 2017, an International Conference on Crystal Growth is to be held in Freiburg under the auspices of the German Association of Crystal Growth DGKK and the Swiss Society for Crystallography SGK-SSCR. The conference, jointly organized by the Fraunhofer Institute for Solar Energy Systems ISE, the Crystallography department of the Institute of Earth and Environmental Sciences at the University Freiburg and the University of Geneva, is to be held in the seminar rooms of the Chemistry Faculty of the University of Freiburg. Furthermore, the Young DGKK will hold a seminar for young scientists at Fraunhofer ISE on March 7, 2017.

“Whether for mobile communication, computers or LEDs, crystalline materials are key components of our modern lifestyle,” says Dr. Stephan Riepe, group head in the Department of Silicon Materials at Fraunhofer ISE. “Crystal growth has a long tradition and today is still far from becoming obsolete. Materials with special crystalline structure are being developed for applications in high-temperature superconductors through to low-loss power transmission. Artificial diamonds are a favorite choice for building quantum computers. At the conference, the production of silicon, III-V semiconductors and most currently perovskite layers for cost-effective high efficiency tandem solar cells will also be discussed.”

Continue reading “Crystals for Superconduction, Quantum Computing and High Efficiency Solar Cells” »

Feb 10, 2017

3D printed soft robotic hand controlled by brain signals offers ‘better interaction with the environment’

Posted by in categories: 3D printing, quantum physics, robotics/AI

Add RadioBio/ Quantum Biosystem technology and this will be perfect.


Soft robotics researchers at the University of Wollogong (UOW) in Australia have used 3D printing to build a realistic robotic hand that can be controlled by brain signals and which has a surface texture similar to human skin.

Continue reading “3D printed soft robotic hand controlled by brain signals offers ‘better interaction with the environment’” »

Feb 9, 2017

Another hurdle to quantum computers cleared: Sorting machine for atoms

Posted by in categories: computing, particle physics, quantum physics

Nice.


Physicists at the University of Bonn have cleared a further hurdle on the path to creating quantum computers: in a recent study, they present a method with which they can very quickly and precisely sort large numbers of atoms. The work has now been published in Physical Review Letters.

Imagine you are standing in a grocery store buying apple juice. Unfortunately, all of the crates are half empty because other customers have removed individual bottles at random. So you carefully fill your crate bottle by bottle. But wait: The neighboring crate is filled in exactly the opposite way! It has bottles where your crate has gaps. If you could lift these bottles in one hit and place them in your crate, it would be full straight away. You could save yourself a lot of work.

Continue reading “Another hurdle to quantum computers cleared: Sorting machine for atoms” »

Feb 9, 2017

Dotz Nano reveals proof of concept for a new type of flash memory

Posted by in categories: computing, quantum physics, solar power, sustainability

New Graphene based flash memory card coming.


Dotz Nano (ASX: DTZ) has successfully completed a proof of concept research study into the use of Graphene Quantum Dots (GQDs) in flash memory devices with the Kyung Hee University in South Korea.

GQDs are being developed for use in various applications including medical imaging, sensing, consumer electronics, energy storage, solar cells and computer storage.

Continue reading “Dotz Nano reveals proof of concept for a new type of flash memory” »

Feb 9, 2017

Apple Patent Reveals Breakthrough Quantum Tunneling Touch-Sensitive Materials for iPhone, Smart Cases & More

Posted by in categories: mobile phones, quantum physics

Well, I asked about Apple’s own investment in QC; we now have our answer.


Today the US Patent & Trademark Office published a patent application from Apple that reveals a new breakthrough material described as deformable touch-sensitive quantum tunneling material. It could be used in a smart iPhone case allowing for touch zones on the back of the case to control your iPhone. More importantly, it could be used as a material for making the iPhone itself. The use of this material would virtually eliminate bulky physical buttons forever making the iPhone near waterproof perfect and slick to the touch. The material could extend to a new smart Apple Watch band. Smart Apple Watch Bands have been on Apple’s mind for some time now as we’ve covered a number of interesting patent ideas like smart links, chameleonic bands with 3D touch and cooling and, easy recharging with a MacBook. Yet the use of quantum tunneling material in a band would allow for touch controls without seeing any buttons.

This could also apply to accessories like future EarPods to eliminate the bulky remote and much more. This breakthrough material will eventually provide Jony Ive’s industrial design team with new ways to streamline designs and finally eliminate physical buttons of any kind while allowing device designs to be even thinner.

Continue reading “Apple Patent Reveals Breakthrough Quantum Tunneling Touch-Sensitive Materials for iPhone, Smart Cases & More” »

Feb 9, 2017

Novel quantum state in strange insulating materials

Posted by in categories: materials, quantum physics

Experiments show how electrons in Mott insulators with strong spin-orbit coupling arrange themselves to make the materials magnetic at low temperatures. The work helps bring us closer to a more complete quantum theory of magnetism.

Read more

Feb 9, 2017

AI learns to solve quantum state of many particles at once

Posted by in categories: particle physics, quantum physics, robotics/AI

The same kind of artificial intelligence that beat a top human player at Go could help grapple with the astonishing complexity of large quantum systems.

Read more

Feb 9, 2017

RadioBio: What role does electromagnetic signaling have in biological systems?

Posted by in categories: augmented reality, health, military, mobile phones, quantum physics, robotics/AI, wearables

Many have asked me what does this DARPA announcement on their project (RadioBio) mean. Well, imagine a world in the next 10 to 15 years where you no longer need any devices (no smartphone, no AR contacts, no smartwatch, no wearables, no external BMIs or invasive implants, etc.) of any kind as Quantum Bio technology uses (in DARPA’s case) connected cell technology to connect people to people and information online (private and publically available. This approach is the least invasive method of turning cells into connected technology.

Military will mean no more lugging of devices and certain types of equipment around on the battlefield plus lower risk of stolen intelligence as no device or equipment left behind or stolen.

What does it mean to consumers? Means no more losing phones and other devices as well as broken down equipment be replaced every 2years and no more insurance and extra-warranty payments for devices; and no more devices stolen with your information on it. And, it means my doctors and body (AI and non-AI methods) can monitor my health and activate pain relief, etc. through biosystem treatments such as pain can be suppressed via the readings or before the pain is felt. It also empowers the immune system to proactively prevent diseases as the biosystem technology will monitor and treat as needed.

Read more

Feb 9, 2017

Primitive Quantum Computing Helps Test Theoretical Physics

Posted by in categories: computing, particle physics, quantum physics

In Brief:

Physicists were able to simulate high-energy experimens thanks to this primitive quantum computer. Prediction of theoretical physics may soon be tested.

Our current computers are not capable of running simulations of high-energy physics experiments. However, quite recently, scientists were able to use a primitive quantum computer in the simulation of the spontaneous creation of particle-antiparticle pairs. This makes it easier for physicists to further investigate the fundamental particles. A research team published their findings in the journal, Nature.

Continue reading “Primitive Quantum Computing Helps Test Theoretical Physics” »

Feb 9, 2017

The Quantum World of Digital Physics: Can a Virtual Reality be Real?

Posted by in categories: particle physics, quantum physics, virtual reality

Playlist: Do We Live in a Simulated Reality?

The Quantum World of Digital Physics: Can a virtual reality be real?

Continue reading “The Quantum World of Digital Physics: Can a Virtual Reality be Real?” »