Menu

Blog

Archive for the ‘quantum physics’ category: Page 722

Feb 9, 2017

Primitive Quantum Computing Helps Test Theoretical Physics

Posted by in categories: computing, particle physics, quantum physics

In Brief:

Physicists were able to simulate high-energy experimens thanks to this primitive quantum computer. Prediction of theoretical physics may soon be tested.

Our current computers are not capable of running simulations of high-energy physics experiments. However, quite recently, scientists were able to use a primitive quantum computer in the simulation of the spontaneous creation of particle-antiparticle pairs. This makes it easier for physicists to further investigate the fundamental particles. A research team published their findings in the journal, Nature.

Continue reading “Primitive Quantum Computing Helps Test Theoretical Physics” »

Feb 9, 2017

The Quantum World of Digital Physics: Can a Virtual Reality be Real?

Posted by in categories: particle physics, quantum physics, virtual reality

Playlist: Do We Live in a Simulated Reality?

The Quantum World of Digital Physics: Can a virtual reality be real?

Continue reading “The Quantum World of Digital Physics: Can a Virtual Reality be Real?” »

Feb 9, 2017

Brain to Brain Connectivity During Distal Psycho-informational Influence Sessions, Between Spatially and Sensory Isolated Subjects

Posted by in categories: business, life extension, neuroscience, quantum physics

Sharing more research conducted on Quantum Bio’s Brain to Brain communications. For all my hardware/ device friends exploring their own futures in a QC world. This was resurfaced in Jan 2017; the report itself is still relevant. Quantum Bio truly will change our device markets, IoT, and medicine/ healthcare drastically. This will be where we truly see tech and bio as one.

Want to see real convergence of tech and bio meaning no more need for smart devices, improved immunology in humans to counteract proactively disease and illness, accelerate heal times from injuries, reverse aging, etc. then you need to definitely engage Quantum bio in your work and discoveries as many have seen its potential and making changes leveraging this technology.


What you do on the Internet is nobody’s business but yours. At ProxySite.com, we stand between your web use and anyone who tries to sneak a peek at it. Instead of connecting directly to a website, let us connect to the website and send it back to you, and no one will know where you’ve been. Big Brother (or other, less ominous snoops) won’t be able to look over your shoulder and spy on you to see what you’re reading, watching or saying.

Read more

Feb 9, 2017

Quantum Neural Network-Based EEG Filtering for a Brain–Computer Interface

Posted by in categories: information science, quantum physics, robotics/AI

Nice research paper on Quantum Neural Networks for BMI related technologies. This is not a new article and more of a study published in 2014. Quantum Bio will change BMI.

Another version of this topic.


A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics.

Continue reading “Quantum Neural Network-Based EEG Filtering for a Brain–Computer Interface” »

Feb 9, 2017

Quantum entanglement in photoactive prebiotic systems

Posted by in category: quantum physics

Although this article is 2 years old; it covers one of the foundational areas of Quantum Biology.


Figure legend:

You can see in the enclosed figure the quantum entanglement phenomenon in the closely self-assembled two synthesized protocells system due to the photo excited electron charge transfer from one protocell to another that leads to closer self-assembly and exchange of energy and information.

Continue reading “Quantum entanglement in photoactive prebiotic systems” »

Feb 9, 2017

DARPA to Hold Proposers Day for Electromagnetic Biosignaling Identification Program

Posted by in categories: biological, quantum physics

Cannot wait to see the outcomes as it will prove how Quantum principles are in fact a core peice in biology that will open up more innovation in areas like BMI, cell circuitry, etc.


The Defense Advanced Research Projects Agency will conduct a Proposers Day via webcast on Feb. 21 to discuss the RadioBio program that aims to determine whether purposeful signaling through electromagnetic waves occurs between biological cells.

“If we can prove that purposeful signaling is happening, the next step would be to discover how the process works,” Mike Fiddy, DARPA program manager, said in a statement released Tuesday.

Continue reading “DARPA to Hold Proposers Day for Electromagnetic Biosignaling Identification Program” »

Feb 8, 2017

Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle

Posted by in categories: bioengineering, biotech/medical, life extension, neuroscience, quantum physics

This is definitely a share that is interesting to many studying synthetic organs and their acceptance into the human body as well as the work occurring on Quantum biology as well.


The goal of in vitro and in vivo toxicity testing is to identify compounds that would predict adverse reactions in humans. Olson et al. found that only 70% of human toxicity was predicted from animal testing. Currently we rely on traditional toxicity testing in animals, a 1930’s methodology that is now challenged due to questionable relevance to human risk, high cost, ethical concerns, and throughput that is too limited for the nearly 80,000 industrial chemicals not yet tested for safety. Additionally, testing usually extrapolates acute, high dose animal results to chronic, low dose human exposures, thereby risking rejection or limiting the use of drugs, industrial chemicals or consumer products. Moreover, the ability of lab animal target organ toxicity to predict dose-limiting toxicity in the corresponding human organ varies widely, from a low of 30% for human cutaneous toxicity, to 50–60% for human hepatotoxicity, to a high of 90% for hematological drug toxicity. Animal drug efficacy models are also notoriously discordant. In an analysis of six drugs to treat head injury, hemorrhage, acute ischemic stroke, neonatal respiratory distress syndrome, and osteoporosis, it was found that efficacy was similar in animals and humans for three drugs but was dissimilar for another three. In oncology drug development, animal models often over-predict anti-tumor efficacy in humans3,4. Examples such as these highlight the need to continue research into methods that reduce the dependence on laboratory animals for toxicity testing of environmental chemicals, determine efficacy and toxicity in drug development, serve as a mimic of human diseases, and provide patient-specific guidance in the emerging field of precision medicine.

Recent advances in bioengineered materials, microfluidic technology, and the availability of human primary, immortalized, and induced pluripotent stem cell (iPSC)-derived cells are enabling development of human microphysiological systems (MPS), sometimes called “organs-on-a-chip” or “human-on-a-chip,” that use multiple organ-specific human cells to recapitulate many functional and structural properties of a human organ. It is now generally accepted and supported by data that cellular responses to drugs in most human organs are more accurately approximated in 3D cell cultures than in traditional static 2D cell cultures5,6. Microfluidic perfusion further improves model performance by providing a flow of nutrients and oxygen and the removal of waste products from the cell cultures. Physiologically relevant flow increases oxygen consumption, Krebs cycle activity and secretion of synthesized proteins, and decreases expression of the hypoxia HIF1 gene. Flow also improves the absorption and metabolism of compounds like benzo[a]pyrene6,8,9. The large number of recent publications reviewing organ MPS models indicates a high degree of interest by industrial and academic researchers, granting agencies and other stakeholders10,11,12,13. In addition to the stand-alone MPS, investigators are linking MPS to study organ-organ functional interactions, efficacy, PK and toxicology14,15,16,17,18.

Continue reading “Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle” »

Feb 8, 2017

Implanted Biosensors Track Vital Signs

Posted by in categories: computing, quantum physics

With the work we are doing on cell circuitry technology and Quantum; these implants will become more and more seamless in all living things.


A biosensor developed in Clemson University, South Carolina, funded by the U.S. Department of Defense, will be able to transmit information regarding blood lactate and glucose levels of a wounded soldier or of other injured patients. The biochip will be implanted in the patient’s body for a short time and will wirelessly transmit the levels of lactate and glucose to the medical staff.

The biochip, sized 2mm x 4mm x 0.5mm, is a dual sensing element coated with hydrogels to prevent it from being rejected by human tissue. The sensor has the ability to transmit life saving readings to the medical personnel. The implantation of the chip will only be temporary, although long term biochip implants are also being tested and may be used as a precaution in some cases.

Continue reading “Implanted Biosensors Track Vital Signs” »

Feb 8, 2017

Here’s what the Future of Banking Security Might Look Like

Posted by in categories: finance, privacy, quantum physics, security

Quantum Tech and Bank security.


BT’s research arm showcased the future of banking technology, including quantum key distribution and biometrics.

Read more

Feb 8, 2017

MIT Scientists: Cosmos Aligns to Show “Einstein Out of Whack” With Quantum Reality (VIDEO)

Posted by in categories: particle physics, quantum physics

Nice read & video illustration.


Quantum entanglement may appear to be closer to science fiction than anything in our physical reality. But according to the laws of quantum mechanics — a branch of physics that describes the world at the scale of atoms and subatomic particles — quantum entanglement, which Einstein once skeptically viewed as “spooky action at a distance,” is, in fact, real.

Continue reading “MIT Scientists: Cosmos Aligns to Show ‘Einstein Out of Whack’ With Quantum Reality (VIDEO)” »