Menu

Blog

Archive for the ‘quantum physics’ category: Page 73

Jun 26, 2024

Raphael Bousso — Is Information Fundamental?

Posted by in categories: particle physics, quantum physics

Watch more interviews on the deep laws of nature: https://shorturl.at/P6tIr Does information work at the deep levels of physics, including quantum theory, undergirding the fundamental forces and particles? But what is the essence of information—describing how the world works or being how the world works. There is a huge difference. Could information be the most basic building block of reality? Support the show with Closer To Truth merchandise: https://bit.ly/3P2ogje Follow us on Instagram for news, giveaways, announcements, and more: https://shorturl.at/dnA39 Raphael Bousso is a theoretical physicist and string theorist. He is a professor at Department of Physics, UC Berkeley. He is known for the proposal of Bousso’s holographic bound, also known as the covariant entropy bound. For members-only benefits, register for a free CTT account today: https://shorturl.at/ajRZ8 Closer To Truth, hosted by Robert Lawrence Kuhn and directed by Peter Getzels, presents the world’s greatest thinkers exploring humanity’s deepest questions. Discover fundamental issues of existence. Engage new and diverse ways of thinking. Appreciate intense debates. Share your own opinions. Seek your own answers.

Jun 26, 2024

Exploring the Fabric of the Universe: Hadrons to Cosmological Constant

Posted by in categories: particle physics, quantum physics

Within the vast tapestry of the universe, where the microscopic building blocks of matter intertwine with the cosmic dance of galaxies, lies a story of profound discovery. Venture into a realm where the laws of physics as we know them are both challenged and confirmed, where the invisible forces that hold the very fabric of our reality together are brought into the light. This narrative isn’t born from the pages of a science fiction novel but emerges from the cutting-edge explorations at the heart of quantum physics. At this frontier, scientists embark on a rigorous inquiry to understand the origins of particle mass, revealing insights that connect the infinitesimal to the immense, from the atoms in our bodies to the distant stars.

Jun 26, 2024

On quantum computing for artificial superintelligence

Posted by in categories: information science, quantum physics, robotics/AI

Artificial intelligence algorithms, fueled by continuous technological development and increased computing power, have proven effective across a variety of tasks. Concurrently, quantum computers have shown promise in solving problems beyond the reach of classical computers. These advancements have contributed to a misconception that quantum computers enable hypercomputation, sparking speculation about quantum supremacy leading to an intelligence explosion and the creation of superintelligent agents. We challenge this notion, arguing that current evidence does not support the idea that quantum technologies enable hypercomputation. Fundamental limitations on information storage within finite spaces and the accessibility of information from quantum states constrain quantum computers from surpassing the Turing computing barrier.

Jun 26, 2024

Gold nanomembrane coaxes secrets out of surfaces

Posted by in categories: education, quantum physics

“Surfaces were invented by the devil” — this quote is attributed to the theoretical physicist Wolfgang Pauli, who taught at ETH Zurich for many years and in 1945 received the Nobel Prize in physics for his contributions to quantum mechanics. Researchers do, indeed, struggle with surfaces. On the one hand they are extremely important both in animate and inanimate nature, but on the other hand it can be devilishly difficult to study them with conventional methods.

An interdisciplinary team of materials scientists and electrical engineers led by Lukas Novotny, Professor of Photonics at ETH Zurich, together with colleagues at Humboldt-Universität zu Berlin has now developed a method that will make the characterization of surfaces considerably easier in the future.

They recently published the results of their research, which is based on an extremely thin gold membrane, in the scientific journal Nature Communications (“Bulk-suppressed and surface-sensitive Raman scattering by transferable plasmonic membranes with irregular slot-shaped nanopores”).

Jun 26, 2024

Earth’s rotation measured 1000x better with quantum entanglement

Posted by in category: quantum physics

Researchers at the University of Vienna led by Philip Walther just pioneered the field of quantum mechanics and general relativity by measuring “the effect of the rotation of Earth on quantum entangled photons,” as stated in a press release.

In the Vienna experiment, they used an interferometer, which is the most sensitive to rotations. Its unparalleled precision makes it the ultimate tool for measuring rotational speeds, limited only by the boundaries of classical physics.

Jun 25, 2024

Pasqal Reports Loading More Than 1,000 Atoms in Quantum Processor

Posted by in categories: computing, particle physics, quantum physics

Pasqal reported the successful loading of over 1,000 atoms in a single shot within their quantum computing setup.

Jun 25, 2024

Quantum annealer improves understanding of quantum many-body systems

Posted by in categories: particle physics, quantum physics, supercomputing

The result is a significant advancement in the field, showcasing the practical applicability of quantum computing in solving complex material science problems. Furthermore, the researchers discovered factors that can improve the durability and energy efficiency of quantum memory devices. The findings have been published in Nature Communications.

In the early 1980s, Richard Feynman asked whether it was possible to model nature accurately using a classical computer. His answer was: no. The world consists of fundamental particles, described by the principles of quantum physics. The exponential growth of the variables that must be included in the calculations pushes even the most powerful supercomputers to their limits. Instead, Feynman suggested using a computer that was itself made up of . With his vision, Feynman is considered by many to be the Father of Quantum Computing.

Scientists at Forschungszentrum Jülich, together with colleagues from Slovenian institutions, have now shown that this vision can actually be put into practice. The application they are looking at is a so-called many-body system. Such systems describe the behavior of a large number of particles that interact with each other.

Jun 25, 2024

A new theory of quantum gravity could explain the biggest puzzle in cosmology, study suggests

Posted by in categories: cosmology, quantum physics

A new theory of quantum gravity, which attempts to unite quantum physics with Einstein’s relativity, could help solve the puzzle of the universe’s expansion, a theoretical paper suggests.

Jun 25, 2024

Does quantum gravity exist?

Posted by in categories: particle physics, quantum physics, space

Several thousand sensors distributed over a square kilometer near the South Pole are tasked with answering one of the large outstanding questions in physics: does quantum gravity exist?

The sensors monitor neutrinos —particles with no electrical charge and almost without mass—arriving at the Earth from outer space. A team from the Niels Bohr Institute (NBI) at the University of Copenhagen have contributed to developing the method which exploits neutrino data to reveal if quantum gravity exists.

“If as we believe, quantum gravity does indeed exist, this will contribute to unite the current two worlds in physics. Today, classical physics describes the phenomena in our normal surroundings such as gravity, while the atomic world can only be described using quantum mechanics. The unification of quantum theory and gravitation remains one of the most outstanding challenges in fundamental physics. It would be very satisfying if we could contribute to that end,” says Tom Stuttard, assistant professor at NBI.

Jun 25, 2024

Neuromorphic nanoelectronic materials

Posted by in categories: biological, chemistry, nanotechnology, quantum physics, robotics/AI

Memristive and nanoionic devices have recently emerged as leading candidates for neuromorphic computing architectures. While top-down fabrication based on conventional bulk materials has enabled many early neuromorphic devices and circuits, bottom-up approaches based on low-dimensional nanomaterials have shown novel device functionality that often better mimics a biological neuron. In addition, the chemical, structural and compositional tunability of low-dimensional nanomaterials coupled with the permutational flexibility enabled by van der Waals heterostructures offers significant opportunities for artificial neural networks. In this Review, we present a critical survey of emerging neuromorphic devices and architectures enabled by quantum dots, metal nanoparticles, polymers, nanotubes, nanowires, two-dimensional layered materials and van der Waals heterojunctions with a particular emphasis on bio-inspired device responses that are uniquely enabled by low-dimensional topology, quantum confinement and interfaces. We also provide a forward-looking perspective on the opportunities and challenges of neuromorphic nanoelectronic materials in comparison with more mature technologies based on traditional bulk electronic materials.

Page 73 of 836First7071727374757677Last