Menu

Blog

Archive for the ‘quantum physics’ category: Page 739

Oct 16, 2016

Cognitive Scale – Cognitive Computing in The Cloud

Posted by in categories: computing, quantum physics, robotics/AI

Everything is about cloud computing these days. In fact, there is such an emphasis on stuffing all your applications into the cloud that we’ve managed to create a situation where now we’re having performance issues. So then the tech world came up with another concept called fog computing which means we take everything out of the cloud and move it “to the edge”. It’s only a matter of time before we decide that edge computing isn’t centralized enough and then start moving everything back up to the cloud. All the while, highly paid data consultants are laughing all the way to the bank. The truth is though that cloud based solutions (also called software-as-a-service or SaaS) are here to stay. In many cases, the technology on offer is so complex and resource intensive that it only works with a centralized model. Quantum computing is a good example of this. So is IBM’s Watson cognitive computing solution. The company we’re going to talk about in this article, Cognitive Scale, is taking IBM Watson and making cognitive computing available to anyone via the cloud.

cognitive-scale-logo

Founded in 2013, Texas based startup Cognitive Scale took in $25 million in funding just last week from investors that included Intel, Microsoft, and IBM. Probably the most compelling thing about Cognitive Scale is the pedigree of their leadership. The Company Chairman, Manoj Saxena, was responsible for commercializing IBM’s Watson with a $1 billion investment from IBM. He ended up at IBM because a company he founded called Webify was acquired by IBM in 2006. In fact, he founded and sold two venture-backed software companies in just 5 years’ time. The founder and CTO of Cognitive Scale, Matt Sanchez, was the 3rd employee and Chief Architect of Webify and was responsible for founding the R&D arm of IBM Watson called IBM Watson Labs. See how this all fits together?

Read more

Oct 16, 2016

Teleportation of light particles across cities in China and Canada a ‘technological breakthrough’

Posted by in categories: particle physics, quantum physics

Ok; USA where are you nowdays?


Scientists have shown they can teleport photons across a city, a development that has been hailed as “a technological breakthrough”.

However, do not expect to see something akin to the Star Trek crew beaming from the planet’s surface to the Starship Enterprise.

Continue reading “Teleportation of light particles across cities in China and Canada a ‘technological breakthrough’” »

Oct 15, 2016

Exceptionally robust quantum states found in industrially important semiconductor

Posted by in categories: particle physics, quantum physics

Another huge leap forward in mass production of Quantum devices found.


Harnessing solid-state quantum bits, or qubits, is a key step toward the mass production of electronic devices based on quantum information science and technology. However, realizing a robust qubit with a long lifetime is challenging, particularly in semiconductors comprising multiple types of atoms.

The close collaboration between experiments in Prof. David Awschalom’s group and theory and simulations in Prof. Giulia Galli’s group, both in the Institute for Molecular Engineering, has enabled a crucial step toward solid-state qubits in industrially important semiconductors. In a paper, published Sept. 29 in Nature Communications, the two groups showed that electron qubits bound to atom-like defects in a commercial silicon carbide wafer can exhibit the longest electronic coherence times ever measured in a natural crystal.

Continue reading “Exceptionally robust quantum states found in industrially important semiconductor” »

Oct 15, 2016

Beyond Space & Time: Quantum Theory Suggests Consciousness Moves on After Death

Posted by in categories: neuroscience, quantum physics

More on that “Quantum State of Mind”.


Collective Evolution: Lanza’s theory implies that if the body generates consciousness, then consciousness dies when the body dies. But if the body receives consciousness in the same way that a cable box receives satellite signals, then of course consciousness does not end at the death of the physical vehicle. This is an example that’s commonly used to describe the enigma of consciousness.

Read more

Oct 15, 2016

The Cancer Surgeon’s Latest Tool: Quantum Dots

Posted by in category: quantum physics

Nice.


Now used to brighten displays, quantum dots could one day guide a surgeon’s hand.

Read more

Oct 15, 2016

IEEE Reboots, Scans for Future Architectures

Posted by in categories: computing, information science, quantum physics, solar power, sustainability

If there is any organization on the planet that has had a closer view of the coming demise of Moore’s Law, it is the Institute of Electrical and Electronics Engineers (IEEE). Since its inception in the 1960s, the wide range of industry professionals have been able to trace a steady trajectory for semiconductors, but given the limitations ahead, it is time to look to a new path—or several forks, to be more accurate.

This realization about the state of computing for the next decade and beyond has spurred action from a subgroup, led by Georgia Tech professor Tom Conte and superconducting electronics researcher, Elie Track called “Rebooting Computing,” which produces reports based on invite-only deep dives on a wide range of post-Moore’s Law technologies, many of which were cited here this week via Europe’s effort to pinpoint future post-exascale architectures. The Rebooting Computing effort is opening its doors next week for a wider-reaching, open forum in San Diego to bring together new ideas in novel architectures and modes of computing as well as on the applications and algorithm development fronts.

According to co-chair of the Rebooting Computing effort, Elie Track, a former Yale physicist who has turned his superconducting circuits work toward high efficiency solar cells in his role at startup Nvizix, Moore’s Law is unquestionably dead. “There is no known technology that can keep packing more density and features into a given space and further, the real issue is power dissipation. We just cannot keep reducing things further; a fresh perspective is needed.” The problem with gaining that view, however, is that for now it means taking a broad, sweeping look across many emerging areas; from quantum and neuromorphic devices, approximate computing, and a wide range of other technologies. “It might seem frustrating that this is general, but there is no clear way forward yet. What we all agree on is that we need exponential growth in computing engines.”

Continue reading “IEEE Reboots, Scans for Future Architectures” »

Oct 15, 2016

For the First Time, Researchers Bridge Quantum Computers on a Single Chip

Posted by in categories: computing, quantum physics

Luv it and not surprised since we have proven we can make QC scalable and Google’s new QC Device launches in 2017.


Maybe building a full-scale quantum computer is just a matter of linking a bunch of small ones.

Read more

Oct 15, 2016

Scientists claim to have discover what existed BEFORE the beginning of the universe

Posted by in categories: cosmology, information science, mathematics, quantum physics

Nice.


There are many scientific and non-scientific varieties of the answer about what came before Big Bang. Some say there was literally nothing and some say a black hole or a multiverse. But now a group of mathematicians from Canada and Egypt have analyzed some cutting edge scientific theory and a complex set of equations to find what preceded the universe in which we live. Their research paper has been published in Nature.

Continue reading “Scientists claim to have discover what existed BEFORE the beginning of the universe” »

Oct 15, 2016

Diamonds aren’t forever: Sandia, Harvard team create first quantum computer bridge

Posted by in categories: 3D printing, computing, nanotechnology, quantum physics

Another article on the QC advancement; however, as I told folks synthetic diamonds are key plus the crystalized formation are proven to be very useful not only in QC processing; but also for the light-based (Quantum) networking. I see this only the beginning (as we have seen with Synthetic DNA data storage) for synthetic gem crystalize formations in their usage in technology. Hoping folks are checking out the 3D Printers creating these synthetics because we truly are on the path of seeing our world transform to new levels never imagined.


Abstract: By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

“People have already built small quantum computers,” says Sandia researcher Ryan Camacho. “Maybe the first useful one won’t be a single giant quantum computer but a connected cluster of small ones.”

Continue reading “Diamonds aren’t forever: Sandia, Harvard team create first quantum computer bridge” »

Oct 15, 2016

Chinese scientists achieve high-power quantum computing

Posted by in categories: computing, military, particle physics, quantum physics

China’s latest work on QC.


If early mechanical computers were never introduced to expand people’s computing ability, the invention of the atomic bomb would have gone out the window, and human history would have been rewritten.

This highlights the significance of computer simulation in scientists’ exploration of the physical world, which also explains their strong motivation in continuously pursuing higher computing power.

Continue reading “Chinese scientists achieve high-power quantum computing” »