Menu

Blog

Archive for the ‘quantum physics’ category: Page 92

May 19, 2024

Scientists Shrunk the Gap Between Atoms to an Astounding 50 Nanometers

Posted by in categories: particle physics, quantum physics

A breakthrough experiment brings particles into unprecedented proximity, revealing new quantum behaviors.

May 19, 2024

Bizarre device uses ‘blind quantum computing’ to let you access quantum computers from home

Posted by in categories: computing, internet, quantum physics

Researchers have developed a new communication paradigm that can let them securely connect a PC to a quantum computer over the internet.

Known as “blind quantum computing,” the technique uses a fiber-optic cable to connect a quantum computer with a photon-detecting device and uses quantum memory — the equivalent of conventional computing memory for quantum computers. This device is connected directly to a PC, which can then perform operations on the quantum computer remotely. The details were outlined in a new study published April 10 in the journal Physical Review Letters.

May 19, 2024

Nvidia SHATTERS Quantum Computing! Mind-Blowing CUDA-Q Centers Unveiled

Posted by in categories: computing, quantum physics

🔒 Keep Your Digital Life Private and Be Safe Online: https://nordvpn.com/safetyfirst

May 19, 2024

Breaking Light Speed: The Quantum Tunneling Enigma

Posted by in categories: particle physics, quantum physics

In an amazing phenomenon of quantum physics known as tunneling, particles appear to move faster than the speed of light. However, physicists from Darmstadt believe that the time it takes for particles to tunnel has been measured incorrectly until now. They propose a new method to stop the speed of quantum particles.

In classical physics, there are strict laws that cannot be circumvented. For instance, if a rolling ball lacks sufficient energy, it will not get over a hill; instead, it will roll back down before reaching the peak. In quantum physics, this principle is not quite so strict. Here, a particle may pass a barrier, even if it does not have enough energy to go over it. It acts as if it is slipping through a tunnel, which is why the phenomenon is also known as “quantum tunneling.” Far from mere theoretical magic, this phenomenon has practical applications, such as in the operation of flash memory drives.

Quantum Tunneling and Relativity.

May 19, 2024

Evolutionary Emergence: From Primordial Atoms to Living Algorithms of Artificial Superintelligence

Posted by in categories: biological, cosmology, information science, particle physics, quantum physics, robotics/AI

To be clear, humans are not the pinnacle of evolution. We are confronted with difficult choices and cannot sustain our current trajectory. No rational person can expect the human population to continue its parabolic growth of the last 200 years, along with an ever-increasing rate of natural resource extraction. This is socio-economically unsustainable. While space colonization might offer temporary relief, it won’t resolve the underlying issues. If we are to preserve our blue planet and ensure the survival and flourishing of our human-machine civilization, humans must merge with synthetic intelligence, transcend our biological limitations, and eventually evolve into superintelligent beings, independent of material substrates—advanced informational beings, or ‘infomorphs.’ In time, we will shed the human condition and upload humanity into a meticulously engineered inner cosmos of our own creation.

Much like the origin of the Universe, the nature of consciousness may appear to be a philosophical enigma that remains perpetually elusive within the current scientific paradigm. However, I emphasize the term “current.” These issues are not beyond the reach of alternative investigative methods, ones that the next scientific paradigm will inevitably incorporate with the arrival of Artificial Superintelligence.

The era of traditional, human-centric theoretical modeling and problem-solving—developing hypotheses, uncovering principles, and validating them through deduction, logic, and repeatable experimentation—may be nearing the end. A confluence of factors—Big Data, algorithms, and computational resources—are steering us towards a new type of discovery, one that transcends the limitations of human-like logic and decision-making— the one driven solely by AI superintelligence, nestled in quantum neo-empiricism and a fluidity of solutions. These novel scientific methodologies may encompass, but are not limited to, computing supercomplex abstractions, creating simulated realities, and manipulating matter-energy and the space-time continuum itself.

May 19, 2024

China claims to shakes off US sanction shackle, produces quantum module

Posted by in categories: computing, quantum physics

China claims to develop crucial quantum computing component domestically, hinting at self-reliance amid intensifying US rivalry.

May 19, 2024

UK builds world’s smallest light detector to shrink quantum computers

Posted by in categories: computing, quantum physics

The detector is not just the world’s smallest but also 10 times faster than detectors previously built for quantum light detection.

May 18, 2024

A New Dimension of Quantum Materials: Topological Phonons Discovered in Crystal Lattices

Posted by in categories: mathematics, particle physics, quantum physics, space

An international research team has shown that phonons, the quantum particles behind material vibrations, can be classified using topology, much like electronic bands in materials. This breakthrough could lead to the development of new materials with unique thermal, electrical, and mechanical properties, enhancing our understanding and manipulation of solid-state physics.

An international group of researchers has found that quantum particles, which play a key role in the vibrations of materials affecting their stability and other characteristics, can be classified through topology. Known as phonons, these particles represent the collective vibrational patterns of atoms within a crystal structure. They create disturbances that spread like waves to nearby atoms. Phonons are crucial for several properties of solids, such as thermal and electrical conductivity, neutron scattering, and quantum states including charge density waves and superconductivity.

The spectrum of phonons—essentially the energy as a function of momentum—and their wave functions, which represent their probability distribution in real space, can be computed using ab initio first principle codes. However, these calculations have so far lacked a unifying principle. For the quantum behavior of electrons, topology—a branch of mathematics—has successfully classified the electronic bands in materials. This classification shows that materials, which might seem different, are actually very similar.

May 18, 2024

What If the Universe had No Beginning?

Posted by in categories: cosmology, quantum physics

In this episode, we’ve embarked on an exciting journey into the heart of quantum cosmology, exploring Stephen Hawking’s revolutionary \.

May 18, 2024

Researchers realize multiphoton electron emission with non-classical light

Posted by in categories: particle physics, quantum physics

Strong field quantum optics is a rapidly emerging research topic, which merges elements of non-linear photoemission rooted in strong field physics with the well-established realm of quantum optics. While the distribution of light particles (i.e., photons) has been widely documented both in classical and non-classical light sources, the impact of such distributions on photoemission processes remains poorly understood.

Page 92 of 837First8990919293949596Last