Menu

Blog

Archive for the ‘solar power’ category: Page 54

Apr 15, 2022

Molecular thermal energy system can store solar energy for 18 years

Posted by in categories: computing, solar power, sustainability

Developed by a Chinese-Swedish research group, the device is an ultra-thin chip that could be integrated into electronics such as headphones, smartwatches and telephones. It combines a Molecular Solar Thermal Energy Storage System (MOST) with a micro-fabricated system that includes a thermoelectric generator (TEG) with a low-dimensional material-based microelectromechanical system (MEMS).

Apr 15, 2022

Greece opens the largest double-sided solar farm in Europe

Posted by in categories: solar power, sustainability

The 204-megawatt solar park in the northern Greek town of Kozani was built by Greece’s biggest oil refiner Hellenic Petroleum.

Hellenic Petroleum is one of the largest oil companies in the Balkans but claims to be undergoing a transformation into clean energy. It has installed the largest solar park in Greece and also hints that it may add battery storage too.

Apr 15, 2022

Researchers Set New World Record for Solar Cell Efficiency

Posted by in categories: solar power, sustainability

A German research team has developed a tandem solar cell that reaches 24 percent efficiency – measured according to the fraction of photons converted into electricity (i.e. electrons). This sets a new world record as the highest efficiency achieved so far with this combination of organic and perovskite-based absorbers. The solar cell was developed by Professor Dr. Thomas Riedl’s group at the University of Wuppertal together with researchers from the Institute of Physical Chemistry at the University of Cologne and other project partners from the Universities of Potsdam and Tübingen as well as the Helmholtz-Zentrum Berlin and the Max-Planck-Institut für Eisenforschng in Düsseldorf. The results have been published today (April 13, 2022) in Nature under the title “Perovskite/organic tandem solar cells with indium oxide interconnect.”

Conventional solar cell technologies are predominantly based on the semiconductor silicon and are now considered to be “as good as it gets.” Significant improvements in their efficiency – i.e., more watts of electrical power per watt of solar radiation collected – can hardly be expected. That makes it all the more necessary to develop new solar technologies that can make a decisive contribution to the energy transition. Two such alternative absorber materials have been combined in this work. Here, organic semiconductors were used, which are carbon-based compounds that can conduct electricity under certain conditions. These were paired with a perovskite, based on a lead-halogen compound, with excellent semiconducting properties. Both of these technologies require significantly less material and energy for their production compared to conventional silicon cells, making it possible to make solar cells even more sustainable.

Apr 13, 2022

A new heat engine with no moving parts is as efficient as a steam turbine

Posted by in categories: finance, solar power, sustainability

Engineers at MIT and the National Renewable Energy Laboratory (NREL) have designed a heat engine with no moving parts. Their new demonstrations show that it converts heat to electricity with over 40 percent efficiency—a performance better than that of traditional steam turbines.

The is a thermophotovoltaic (TPV) cell, similar to a solar panel’s photovoltaic cells, that passively captures high-energy photons from a white-hot and converts them into electricity. The team’s design can generate electricity from a heat source of between 1,900 to 2,400 degrees Celsius, or up to about 4,300 degrees Fahrenheit.

The researchers plan to incorporate the TPV cell into a grid-scale thermal battery. The system would absorb from such as the sun and store that energy in heavily insulated banks of hot graphite. When the energy is needed, such as on overcast days, TPV cells would convert the heat into electricity, and dispatch the energy to a power grid.

Apr 13, 2022

Engineers enlist AI to help scale up advanced solar cell manufacturing

Posted by in categories: robotics/AI, solar power, sustainability

Perovskites are a family of materials that are currently the leading contender to potentially replace today’s silicon-based solar photovoltaics. They hold the promise of panels that are far thinner and lighter, that could be made with ultra-high throughput at room temperature instead of at hundreds of degrees, and that are cheaper and easier to transport and install. But bringing these materials from controlled laboratory experiments into a product that can be manufactured competitively has been a long struggle.

Manufacturing perovskite-based involves optimizing at least a dozen or so variables at once, even within one particular manufacturing approach among many possibilities. But a new system based on a novel approach to could speed up the development of optimized production methods and help make the next generation of solar power a reality.

The system, developed by researchers at MIT and Stanford University over the last few years, makes it possible to integrate data from prior experiments, and information based on personal observations by experienced workers, into the machine learning process. This makes the outcomes more accurate and has already led to the manufacturing of perovskite cells with an energy conversion efficiency of 18.5 percent, a competitive level for today’s market.

Apr 13, 2022

A new energy storage system can store solar power for nearly two decades

Posted by in categories: solar power, sustainability

Apr 12, 2022

These Solar Cells Produce Electricity at Night

Posted by in categories: mobile phones, satellites, solar power, sustainability

Researchers used radiative cooling to generate enough to power LEDs or charge a cell phone.


NASA has agreed to test startup SpinLaunch’s kinetic launcher, a giant circular accelerator that aims to shoot 200 kilogram satellites into space.

The California-based SpinLaunch’s launcher is located at the Spaceport America facility in New Mexico where it will carry out a test flight with NASA later this year, according to the firm.

Continue reading “These Solar Cells Produce Electricity at Night” »

Apr 12, 2022

New Photovoltaic Cell Makes Electricity From Thermal Radiation

Posted by in categories: biological, physics, solar power, sustainability

A new PV module makes electricity from thermal radiation. Imagine that.


The electromagnetic spectrum is comprised of thousands upon thousands of frequencies. Sound and light are all part of the spectrum, as are the frequencies that make radio and television broadcasts possible. Today’s solar panels harvest light waves from a small part of the EM spectrum and turn them into electricity, but there are many other frequencies like thermal radiation that could someday stimulate new kinds of photovoltaic cells to generate electricity as well.

Researchers at Stanford have recently published a study in the journal Applied Physics Letters that describes a new type of cell that converts thermal radiation into electricity. When the sun goes down, living organisms and physical structures like buildings, road, and sidewalks radiate heat back into the atmosphere. We call this radiational cooling and it is those electromagnetic waves the Stanford researchers say can be put to work making electricity.

Continue reading “New Photovoltaic Cell Makes Electricity From Thermal Radiation” »

Apr 11, 2022

Innovative agricultural photovoltaic projects and technology

Posted by in categories: food, solar power, sustainability

Agricultural PV (or agrivoltaics) is the simultaneous use of land for both agriculture and solar power generation. This year‘s Intersolar Europe in Munich will put a major focus on this topic.

Apr 10, 2022

Solar cell keeps working long after sun sets

Posted by in categories: solar power, space, sustainability

About 750 million people in the world do not have access to electricity at night. Solar cells provide power during the day, but saving energy for later use requires substantial battery storage.

In Applied Physics Letters, researchers from Stanford University constructed a that harvests energy from the environment during the day and night, avoiding the need for batteries altogether. The device makes use of the heat leaking from Earth back into space—energy that is on the same order of magnitude as incoming solar radiation.

At night, radiate and lose heat to the sky, reaching temperatures a few degrees below the ambient air. The device under development uses a thermoelectric module to generate voltage and current from the temperature gradient between the cell and the air. This process depends on the thermal design of the system, which includes a hot side and a cold side.

Page 54 of 143First5152535455565758Last