Archive for the ‘space’ category: Page 3
Jan 15, 2025
Why the mechanism of everything in the universe has a pattern?
Posted by Dan Breeden in category: space
Why everything in the universe has a pattern which can be identified and understood to determine outcomes, properties, effects of almost everything. I am saying that couldn’t the universe be like patternless, non-deterministic and chaotic. For example why the gravitational force between any two objects has a pattern which always obeys universal law of gravitation and can be predetermined. Couldn’t be the gravitational force between any two given objects would have no pattern and would be completely random and non-deterministic. Is this property of universe in which everything has a pattern is a complete matter of chance or it is a property of even something fundamental.
Jan 15, 2025
Blue Lurker: The Star That Spins Faster Than Expected
Posted by Laurence Tognetti, Labroots Inc. in categories: evolution, space
“This is one of the only triple systems where we can tell a story this detailed about how it evolved,” said Dr. Emily Leiner.
What can fast-spinning stars known as “blue lurkers” teach us about star formation and evolution? This is what a recent study being presented at the 245th American Astronomical Society meeting hopes to address as a team of researchers investigated the potential processes responsible for how an unusually fast-spinning blue lurker-white dwarf star within the open star cluster M67 could have evolved into what we see today. This study has the potential to help researchers better understand the formation and evolution of stars throughout the cosmos and what mysterious behavior they can exhibit.
Located approximately 2,800 light-years from Earth, M67 is estimated to be between 3.2 and 5 billion years old. While the exact number of stars within M67 remains up for debate, astronomers used NASA’s Hubble Space Telescope to identify this blue lurker as being part of a triple star system with the appearance of our Sun. However, it’s the unique spin rate of this star that grabbed the attention of astronomers, who postulate that it gathered material from one of the two other stars, resulting in a spin rate of four days. For context, Sun-like stars typically take approximately 30 days to complete one orbit.
Jan 15, 2025
NASA Unveils New Approach for Mars Sample Return Program
Posted by Laurence Tognetti, Labroots Inc. in categories: solar power, space, sustainability
How will NASA conduct its Mars Sample Return (MSR) Program? This is what the renowned space agency recently discussed as it unveiled two potential landing options for MSR with the goal of determining a final option during the second half of 2026. This comes after NASA tasked a Mars Sample Return Strategic Review team to evaluate 11 proposals in September 2024 for returning samples from Mars to Earth while achieving cost-effectiveness while maximizing mission success.
Both options still call for loading the 30 sample tubes that have been collected and dropped across the Martian surface by NASA’s Perseverance rover during its trek on Mars. However, the Mars Ascent Vehicle, which will lift off from the Martian surface and deliver the samples to the orbiting capsule, will be smaller than previous designs. Additionally, past designs of the landed platform called for solar panels for energy, whereas new designs will incorporate a radioisotope power system for energy needs.
“Pursuing two potential paths forward will ensure that NASA is able to bring these samples back from Mars with significant cost and schedule saving compared to the previous plan,” NASA Administrator Bill Nelson said in a statement. “These samples have the potential to change the way we understand Mars, our universe, and – ultimately – ourselves. I’d like to thank the team at NASA and the strategic review team, led by Dr. Maria Zuber, for their work.”
Jan 15, 2025
GJ 1214 b: Revealing the Secrets of a Super-Venus Exoplanet
Posted by Laurence Tognetti, Labroots Inc. in categories: evolution, space
“The detected CO2 signal from the first study is tiny, and so it required careful statistical analysis to ensure that it is real,” said Dr. Kazumasa Ohno.
Can exoplanets have metal-rich atmospheres? This is what a recent study published in The Astrophysical Journal Letters hopes to address as a team of international researchers investigated a new type of exoplanet that continues to display differences from planets within our own solar system. This study has the potential to help researchers use new methods for characterizing exoplanets while gaining greater insight into planetary formation and evolution throughout the universe.
For the study, which was led by Dr. Everett Schlawin from the University of Arizona, the researchers used data obtained from NASA’s Hubble Space Telescope (HST) and James Webb Space Telescope (JWST) to analyze the atmosphere of GJ 1,214 b, which was discovered in 2009, located approximately 48 light-years from Earth, and has long been hypothesized to be a Neptune-like exoplanet. However, this recent data reveals the atmosphere of GJ 1,214 b contains a metal-rich atmosphere, also known as high metallicity, along with high amounts of hazes, indicating a high carbon dioxide (CO2) content. This suggests that instead of a Neptune-like exoplanet, that GJ 1,214 b is more of a super-Venus exoplanet, which is astounding since its orbital period is only 1.6 days, whereas the orbital period of Venus is 225 days.
Continue reading “GJ 1214 b: Revealing the Secrets of a Super-Venus Exoplanet” »
Jan 15, 2025
Webb reveals intricate layers of interstellar dust and gas
Posted by Saúl Morales Rodriguéz in categories: materials, space
Once upon a time, the core of a massive star collapsed, creating a shockwave that blasted outward, ripping the star apart as it went. When the shockwave reached the star’s surface, it punched through, generating a brief, intense pulse of X-rays and ultraviolet light that traveled outward into the surrounding space. About 350 years later, that pulse of light has reached interstellar material, illuminating it, warming it, and causing it to glow in infrared light.
NASA’s James Webb Space Telescope has observed that infrared glow, revealing fine details resembling the knots and whorls of wood grain. These observations are allowing astronomers to map the true 3D structure of this interstellar dust and gas (known as the interstellar medium) for the first time.
Continue reading “Webb reveals intricate layers of interstellar dust and gas” »
Jan 15, 2025
Simulated universe previews panoramas from NASA’s Roman Telescope
Posted by Saúl Morales Rodriguéz in categories: evolution, space, supercomputing
Astronomers have released a set of more than a million simulated images showcasing the cosmos as NASA’s upcoming Nancy Grace Roman Space Telescope will see it. This preview will help scientists explore Roman’s myriad science goals.
“We used a supercomputer to create a synthetic universe and simulated billions of years of evolution, tracing every photon’s path all the way from each cosmic object to Roman’s detectors,” said Michael Troxel, an associate professor of physics at Duke University in Durham, North Carolina, who led the simulation campaign. “This is the largest, deepest, most realistic synthetic survey of a mock universe available today.”
The project, called OpenUniverse, relied on the now-retired Theta supercomputer at the DOE’s (Department of Energy’s) Argonne National Laboratory in Illinois. In just nine days, the supercomputer accomplished a process that would take over 6,000 years on a typical computer.
Jan 15, 2025
Neutron star measurements place limits on color superconductivity in dense quark matter
Posted by Saúl Morales Rodriguéz in categories: particle physics, space
At extremely high densities, quarks are expected to form pairs, as electrons do in a superconductor. This high-density quark behavior is called color superconductivity. The strength of pairing inside a color superconductor is difficult to calculate, but scientists have long known the strength’s relationship to the pressure of dense matter. Measuring the size of neutron stars and how they deform during mergers tells us their pressure and confirms that neutron stars are indeed the densest visible matter in the universe.
In a recent study, researchers used neutron star observations to infer the properties of quark matter at even higher densities where it is certain to be a color superconductor. This yields the first empirical upper bound on the strength of color superconducting pairing.
The work is published in the journal Physical Review Letters.
Jan 15, 2025
Constraining Light QCD Axions with Isolated Neutron Star Cooling
Posted by Saúl Morales Rodriguéz in categories: chemistry, robotics/AI, space
Back in the old days—the really old days—the task of designing materials was laborious. Investigators, over the course of 1,000-plus years, tried to make gold by combining things like lead, mercury, and sulfur, mixed in what they hoped would be just the right proportions. Even famous scientists like Tycho Brahe, Robert Boyle, and Isaac Newton tried their hands at the fruitless endeavor we call alchemy.
Materials science has, of course, come a long way. For the past 150 years, researchers have had the benefit of the periodic table of elements upon which to draw, which tells them that different elements have different properties, and one can’t magically transform into another. Moreover, in the past decade or so, machine learning tools have considerably boosted our capacity to determine the structure and physical properties of various molecules and substances.
New research by a group led by Ju Li—the Tokyo Electric Power Company Professor of Nuclear Engineering at MIT and professor of materials science and engineering—offers the promise of a major leap in capabilities that can facilitate materials design. The results of their investigation appear in Nature Computational Science.
Jan 14, 2025
HD65907: The Mysterious Case of the Resurrected Star
Posted by Natalie Chan in category: space
The star HD 65,907 is not what it appears to be. It’s a star that looks young, but on closer inspection, it is actually much, much older. What’s going on? Research suggests that it is a resurrected star.
Astronomers employ different methods to measure a star’s age. One is based on its brightness and temperature. All stars follow a particular path in life, known as the main sequence. The moment they begin fusing hydrogen in their cores, they maintain a strict relationship between their brightness and temperature. By measuring these two properties, astronomers can roughly pin down the age of a star.
But there are other techniques, like measuring the amount of heavy elements in a stellar atmosphere. Older stars tend to have fewer of these elements, because they were born at a time before the galaxy had become enriched with them.