Toggle light / dark theme

For centuries, lenses have worked the same way: curved glass or plastic bending light to bring images into focus. But traditional lenses have a major drawback—the more powerful they need to be, the bulkier and heavier they become.

Scientists have long searched for a way to reduce the weight of lenses without sacrificing functionality. And while some slimmer alternatives exist, they tend to be limited in their capacity and are generally challenging and expensive to make.

New research from University of Utah engineering professor Rajesh Menon and colleagues at the Price College of Engineering offers a promising solution applicable to telescopes and astrophotography: a large aperture flat lens that focuses light as effectively as traditional curved lenses while preserving accurate color.

The northern lowlands of early Mars could have contained a significant quantity of liquid water. However, the ocean hypothesis remains controversial due to the lack of conclusive evidence from the Martian subsurface. We use data from the Zhurong Rover Penetrating Radar on the southern Utopia Planitia to identify subsurface dipping reflectors indicative of an ancient prograding shoreline. The reflectors dip unidirectionally with inclinations in the range 6° to 20° and are imaged to a thickness of 10 to 35 m along an uninterrupted 1.3 km northward shoreline-perpendicular traverse. The consistent dip inclinations, absence of dissection by fluvial channels along the extended traverse, and low permittivity of the sediments are consistent with terrestrial coastal deposits—and discount fluvial, aeolian, or magmatic origins favored elsewhere on Mars.

Using the James Webb Space Telescope (JWST), an international team of astronomers has explored the atmosphere of a nearby brown dwarf binary designated WISE J045853.90+643451.9. As a result, they detected hydrogen cyanide and acetylene in the atmosphere of this binary, marking the first time these two species have been identified in the atmosphere of a brown dwarf. The finding was reported Feb. 19 on the arXiv pre-print server.

Brown dwarfs are intermediate objects between planets and stars. Astronomers generally agree that they are substellar objects occupying the mass range between 13 and 80 Jupiter masses. One subclass of brown dwarfs (with effective temperatures between 500 and 1,500 K) is known as T-dwarfs, and represents the coolest and least luminous substellar objects so far detected.

Located just 30.1 light years away, WISE J045853.90+643451.9 (or WISE-0458) is a binary composed of two T-dwarfs of spectral type T8.5 and T9, with effective temperatures of 600 and 500 K, respectively. The pair has a semi-major axis of approximately 5.0 AU.

“The Ouroboros Code” explores the intersection of science and spirituality through the lens of digital alchemy and self-simulation. Authored by Antonin Tuynman, the book presents a philosophical framework called “The Transcendental Metaphysics of Pancomputational Panpsychism” exploring how consciousness may be the fundamental ground of existence and the universe a self-modifying code. Tuynman investigates topics like the nature of intelligence, the limits of computation, and the possibility of artificial general intelligence. The book draws on concepts from physics, information theory, mathematics, and various spiritual traditions, aiming to bridge the gap between objective and subjective realities. It builds upon the author’s previous works and incorporates insights from various scientists and thinkers. Ultimately, the book seeks to understand how the universe, through a recursive process, generates and experiences itself. *Available as a Kindle eBook, paperback, and Audible audiobook: https://www.amazon.com/Ouroboros-Code?tag=lifeboatfound-20… #SelfSimulation #Pancomputationalism #DigitalPhysics #ComputationalPhysics

Dr. Rumi Chunara: “Our system learns to recognize more subtle patterns that distinguish trees from grass, even in challenging urban environments.”


How can artificial intelligence (AI) help improve city planning to account for more green spaces? This is what a recent study published in the ACM Journal on Computing and Sustainable Societies hopes to address as a team of researchers proposed a novel concept using AI with the goal of both monitoring and improving urban green spaces, which are natural public spaces like parks and gardens, and provide a myriad of benefits, including physical and mental health, combating climate change, wildlife habitats, and increased social interaction.

For the study, the researchers developed a method they refer to as “green augmentation”, which uses an AI algorithm to analyze Google Earth satellite images with the goal of improving current AI methods by more accurately identifying green vegetation like grass and trees under various weather and seasonal conditions. For example, current AI methods identify green vegetation with an accuracy and reliability of 63.3 percent and 64 percent, respectively. Using this new method, the researchers successfully identified green vegetation with an accuracy and reliability of 89.4 percent and 90.6 percent, respectively.

“Previous methods relied on simple light wavelength measurements,” said Dr. Rumi Chunara, who is an associate professor of biostatistics at New York University and a co-author on the study. “Our system learns to recognize more subtle patterns that distinguish trees from grass, even in challenging urban environments. This type of data is necessary for urban planners to identify neighborhoods that lack vegetation so they can develop new green spaces that will deliver the most benefits possible. Without accurate mapping, cities cannot address disparities effectively.”

Take the Space Time Fan Survey Here: https://forms.gle/wS4bj9o3rvyhfKzUA

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Imagine you’re leading a game of 20 questions and you forget the thing you chose half way through. You have to keep answering yesses and nos and hope that you think of something that’s consistent with all your previous questions before the game is done. Well it could be that’s what the entire universe is doing. I hope it thinks of something good before we run out of questions.

A pioneering thermal imaging camera built by the University of Oxford.

The University of Oxford is a collegiate research university in Oxford, England that is made up of 39 constituent colleges, and a range of academic departments, which are organized into four divisions. It was established circa 1096, making it the oldest university in the English-speaking world and the world’s second-oldest university in continuous operation after the University of Bologna.

PUNCH Mission Prepares for Launch

Four small spacecraft, each about the size of a suitcase, are set to launch from Vandenberg Space Force Base in California no earlier than February 28. Designed and built by the Southwest Research Institute (SwRI) in San Antonio, these spacecraft are part of NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission. They will share a ride into space with NASA’s Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) observatory.

MIT physicists report the unexpected discovery of electrons forming crystalline structures in a material only billionths of a meter thick. The work adds to a gold mine of discoveries originating from the material, which the same team discovered only about three years ago.

In a paper published Jan. 22 in Nature, the team describes how electrons in devices made, in part, of the new material can become solid, or form crystals, by changing the voltage applied to the devices when they are kept at a temperature similar to that of outer space. Under the same conditions, they also showed the emergence of two new electronic states that add to work they reported last year showing that electrons can split into fractions of themselves.

The physicists were able to make the discoveries thanks to new custom-made filters for better insulation of the equipment involved in the work. These allowed them to cool their devices to a temperature an order of magnitude colder than they achieved for the earlier results.

A study published in Science Advances sheds new light on the mysterious origins of free-floating planetary-mass objects (PMOs)—celestial bodies with masses between stars and planets.

Led by Dr. Deng Hongping of the Shanghai Astronomical Observatory of the Chinese Academy of Sciences, an international team of astronomers, used advanced simulations to uncover a novel formation process for these enigmatic objects. The research suggests that PMOs can form directly through violent interactions between circumstellar disks in young star clusters.