Toggle light / dark theme
NASA Worm logo on a Falcon 9

Yes, that’s right. The classic NASA “worm” logo is back! An image of the revived NASA worm logo was released on Twitter by NASA Administrator Jim Bridenstine as well as press release on the NASA.gov website.

NASA explained that original NASA insignia is an iconic symbol widely recognized in the world. The NASA “meatball” logo as many know it by represented patriotic American colors. A red chevron wing piercing a blue sphere(Planet) with white stars, and an spacecraft orbiting. This “meatball” logo was not easy to reproduce with 1970’s technology so the Federal Design Improvement Program introduced in 1975 a new logo, the “worm.”

Defining our “New Normal” in the Age of Coronavirus — Amanda Christensen, ideaXme (http://radioideaxme.com/) guest interviewer, interviews Ben Hammersley, one of the world’s leading futurists to answer questions about how we are going to work, live, thrive, and innovate in the coming years — #Ideaxme #BenHammersley #Innovation #Futurist #Futurism #Covid19 #Coronavirus #Science #Longevity #Health #Medicine #Environment #Space #Oceans #Literature #Music #Food #Future #Entertainment #Sports #Fashion Awesome Foundation European University Institute United Nations Alliance of Civilizations (UNAOC) UNAOC Fellowship Program Goldsmiths, University of London WIRED UK The Brookings Institution European Commission.


Amanda Christensen, ideaXme guest interviewer, interviews Ben Hammersley, one of the world’s leading futurists and founder of international Strategic Foresight agency Hammersley Futures.

Amanda Christensen Comments:

Using NASA’s Fermi and Swift spacecraft, astronomers have investigated SGR J1935+2154, the most recurring transient magnetar known to date. The new research sheds more light on the burst properties of this object. The study is detailed in a paper published March 23 on the arXiv pre-print repository.

Magnetars are with extremely , more than 1 quadrillion times stronger than the magnetic field of Earth. Decay of magnetic fields in magnetars powers the emission of high-energy electromagnetic radiation, for instance, in the form of X-rays or radio waves.

Discovered in 2014, SGR J1935+2154 has a spin period of 3.24 seconds, spin-down rate of 14.3 picoseconds/second, and a dipole-magnetic field with a strength at a level of approximately 220 trillion G, what confirms its nature. Since its detection, the source experienced more than 100 bursts, occurring almost annually.

NASA’s new spacesuit may not look any different from the one used for spacewalks outside the International Space Station recently, but the US space agency says the suit is designed to achieve more complex tasks than its predecessors. The new suit, which will be worn by astronauts on the Artemis lunar exploration program, is called the Exploration Extravehicular Mobility Unit, or xEMU for short.

While the spacesuit is still under development, its features have been finalised. It’s already being tested underwater, and orbital testing is scheduled for 2023. Take a look:

1. Can extreme withstand temperatures of −250 degrees Fahrenheit in shade and up to 250 degrees Fahrenheit in the sun.

The obvious drawback of solar panels is that they require sunlight to generate electricity. Some have observed that for a device on Earth facing space, which has a frigid temperature, the chilling outflow of energy from the device can be harvested using the same kind of optoelectronic physics we have used to harness solar energy. New work, in a recent issue of Applied Physics Letters, from AIP Publishing, looks to provide a potential path to generating electricity like solar cells but that can power electronics at night. For more information see the IDTechEx report on Energy Harvesting Microwatt to Megawatt 2019–2029.

An international team of scientists has demonstrated for the first time that it is possible to generate a measurable amount of electricity in a diode directly from the coldness of the universe. The infrared semiconductor device faces the sky and uses the temperature difference between Earth and space to produce the electricity.

“The vastness of the universe is a thermodynamic resource,” said Shanhui Fan, an author on the paper. “In terms of optoelectronic physics, there is really this very beautiful symmetry between harvesting incoming radiation and harvesting outgoing radiation.”

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the U.K., Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of 2.1 micrometers. In practice, entangled photons are used in encryption methods such as quantum key distribution to completely secure telecommunications between two partners against eavesdropping attempts. The research results are presented to the public for the first time in the current issue of Science Advances.

It has been regarded as technically possible to implement encryption mechanisms with entangled photons in the near-infrared range of 700 to 1550 nanometers. However, these have disadvantages, especially in satellite-based communication. They are disturbed by light-absorbing gases in the atmosphere as well as the background radiation of the sun. With existing technology, end-to-end encryption of transmitted data can only be guaranteed at night, but not on sunny and cloudy days.

C omet Atlas is racing toward the inner solar system, and it could become the brightest comet seen in the night sky in over two decades. The comet, discovered by an observatory designed to protect Earth from asteroids, may even be visible during the day just two months from now.

Also known as C/2019 Y4, this comet was discovered by astronomers at the Asteroid Terrestrial-impact Last Alert System (ATLAS) in Hawaii in December 2019. At the time, the comet was exceedingly dim — but the comet became 4,000 times brighter in just a month. This increase is far greater than astronomers predicted, and could potentially signal the comet may soon be exceptionally bright.