Menu

Blog

Archive for the ‘sustainability’ category: Page 24

Jul 31, 2024

More with less: Researchers map a more sustainable path to home construction in Canada

Posted by in categories: climatology, computing, sustainability

Adopting the right mix of sustainable construction practices could allow Canada to meet its housing goals—as many as 5.8 million new homes by 2030—without blowing past its climate commitments.

Researchers in the University of Toronto’s Centre for the Sustainable Built Environment (CSBE) have developed a computer simulation that forecasts the emissions associated with new housing and infrastructure construction. The paper is published in the journal Environmental Science & Technology.

The work builds on previous CSBE research showing that in order for Canada to meet its greenhouse gas emissions targets, homes built in 2030 will need to produce 83% fewer greenhouse gases during construction than those built in 2018.

Jul 31, 2024

Germany achieves stunning increase in solar installations and output

Posted by in categories: solar power, sustainability

The expansion of solar photovoltaic systems in Germany continues to grow as more companies and private households opt for solar energy.

Jul 30, 2024

New, more sustainable method for manufacturing microchips and other nanoscale devices

Posted by in categories: biological, computing, nanotechnology, sustainability

Putting 50 billion transistors into a microchip the size of a fingernail is a feat that requires manufacturing methods of nanometer level precision—layering of thin films, then etching, depositing, or using photolithography to create the patterns of semiconductor, insulator, metal, and other materials that make up the tiny working devices within the chip.

The process relies heavily on solvents that carry and deposit materials in each layer—solvents that can be difficult to handle and toxic to the environment.

Now researchers led by Fiorenzo Omenetto, Frank C. Doble Professor of Engineering at Tufts, have developed a nanomanufacturing approach that uses water as the primary solvent, making it more environmentally compatible and opening the door to the development of devices that combine inorganic and biological materials.

Jul 28, 2024

New microgrids model takes into account a fair design of decentralized energy systems

Posted by in categories: climatology, cybercrime/malcode, sustainability

Local decentralized energy systems, known as microgrids, can make urban infrastructures more resilient and reduce risks for the population, for example, in large-scale power outages due to natural hazards or cyberattacks.

In Nature Sustainability researchers from Karlsruhe Institute of Technology (KIT) present design criteria for microgrids that allow for fair treatment of different social groups alongside technical factors. The study shows how cities can shape the transformation towards a secure and more sustainable and equitable energy supply.

Climate change increases the probability of extreme events, as we have seen during the massive flooding of large parts of southern Germany in June. The question of how cities and municipalities can make more resilient and more secure in the face of such crises is bringing so-called microgrids into focus.

Jul 28, 2024

This Desert Moss has the Potential to Grow on Mars

Posted by in categories: habitats, space, sustainability

The desert moss Syntrichia caninervis is a promising candidate for Mars colonization thanks to its extreme ability to tolerate harsh conditions lethal to most life forms. The moss is well known for its ability to tolerate drought conditions, but researchers report June 30 in the journal The Innovation that it can also survive freezing temperatures as low as −196°C, high levels of gamma radiation, and simulated Martian conditions involving these three stressors combined. In all cases, prior dehydration seemed to help the plants cope.

“Our study shows that the environmental resilience of S. caninervis is superior to that of some of highly stress-tolerant microorganisms and tardigrades,” write the researchers, who include ecologists Daoyuan Zhang and Yuanming Zhang and botanist Tingyun Kuang of the Chinese Academy of Sciences. “S. caninervis is a promising candidate pioneer plant for colonizing extraterrestrial environments, laying the foundation for building biologically sustainable human habitats beyond Earth.”

A small number of previous studies have tested the ability of microorganisms, algae, lichens, and plant spores to withstand the extreme environments of outer space or Mars, but this is the first study to test whole plants.

Jul 28, 2024

Physicists Rewrite Quantum Rules — New Theories Could Revolutionize Materials Science

Posted by in categories: chemistry, computing, particle physics, quantum physics, science, sustainability

Grasping the precise energy landscapes of quantum particles can significantly enhance the accuracy of computer simulations for material sciences. These simulations are instrumental in developing advanced materials for applications in physics, chemistry, and sustainable technologies. The research tackles longstanding questions from the 1980s, paving the way for breakthroughs across various scientific disciplines.

An international group of physicists, led by researchers at Trinity College Dublin, has developed new theorems in quantum mechanics that explain the “energy landscapes” of quantum particle collections. Their work resolves decades-old questions, paving the way for more accurate computer simulations of materials. This advancement could significantly aid scientists in designing materials poised to revolutionize green technologies.

The new theorems have just been published in the prominent journal Physical Review Letters. The results describe how the energy of systems of particles (such as atoms, molecules, and more exotic matter) changes when their magnetism and particle count change. Solving an open problem important to the simulation of matter using computers, this extends a series of landmark works commencing from the early 1980s.

Jul 28, 2024

Engineers develop a recipe for zero-emissions fuel: Soda cans, seawater and caffeine

Posted by in categories: energy, sustainability

A sustainable source for clean energy may lie in old soda cans and seawater. MIT engineers have found that when the aluminum in soda cans is exposed in its pure form and mixed with seawater, the solution bubbles up and naturally produces hydrogen—a gas that can be subsequently used to power an engine or fuel cell without generating carbon emissions. What’s more, this simple reaction can be sped up by adding a common stimulant: caffeine.

In a study appearing today in the journal Cell Reports Physical Science, the researchers show they can produce hydrogen gas by dropping pretreated, pebble-sized aluminum pellets into a beaker of filtered seawater. The aluminum is pretreated with a rare-metal alloy that effectively scrubs aluminum into a pure form that can react with seawater to generate hydrogen. The in the seawater can in turn attract and recover the alloy, which can be reused to generate more hydrogen in a sustainable cycle.

Continue reading “Engineers develop a recipe for zero-emissions fuel: Soda cans, seawater and caffeine” »

Jul 27, 2024

Samsung delivers 600-mile solid-state EV battery as it teases 9-minute charging and 20-year lifespan tech

Posted by in categories: energy, sustainability, transportation

Samsung has been shipping its solid-state battery with high energy density to electric vehicle makers, but warns that it will first land in more expensive models. It is also ready to deliver other promising battery technologies.

Jul 27, 2024

PepsiCo is using robotics and AI-powered crop planning to transform its supply chain

Posted by in categories: food, robotics/AI, satellites, sustainability

PepsiCo uses robotics, satellites, and sensors to optimize its supply chain, from the farm to the factory line where soda bottles are filled.

Jul 27, 2024

Magnetic fields help understand light particle splitting for boosting solar cell efficiency

Posted by in categories: particle physics, solar power, sustainability

Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light—photons—into small chunks.

In a study published in Nature Chemistry researchers unravel the scientific understanding of what happens when light particles split—a process called —and its underlying workings.

Lead researcher Professor Tim Schmidt from UNSW Sydney’s School of Chemistry has studied singlet fission for more than a decade. He says the process could be invoked and applied to improve existing silicon solar cell technologies.

Page 24 of 636First2122232425262728Last