Toggle light / dark theme

Separating the resin, fiberglass, and wood, among others, is achieved through using a mild acid solution. The materials can then go into the circular economy, creating new products like suitcases or flat-screen casings without the need to call on more raw resources.

The RecyclableBlade technology was developed in Aalborg, Denmark, and the blades were manufactured in Hull in the UK (pictured above). The nacelles were produced and installed in Cuxhaven, Germany. Siemens Gamesa has a plan to make all of its wind turbine blades fully recyclable by 2030 and all of its wind turbines fully recyclable by 2040.

Concerns regarding scarcity, high prices, and safety regarding the long-term use of lithium-ion batteries has prompted a team of researchers from Rensselaer Polytechnic Institute to propose a greener, more efficient, and less expensive energy storage alternative.

In research published recently in Proceedings of the National Academy of Science (PNAS), corresponding author Nikhil Koratkar, the John A. Clark and Edward T. Crossan Professor of Engineering at Rensselaer, and his team, assert that could be used as an alternative to lithium-ions in batteries because of its abundance and low cost.

“The vast majority of rechargeable battery products are based on lithium-ion technology, which is the gold standard in terms of performance,” said Dr. Koratkar. “However, the Achilles’ heel for lithium-ion technology is cost. Lithium is a limited resource on the planet, and its price has increased drastically in recent years. We are working on an inexpensive, abundant, safe, and sustainable battery chemistry that uses ions in an aqueous, water-based electrolyte.”

Practical and glamorous, aluminium is prized for making products from kitchen foil and beverage cans to Tesla Roadsters and aircraft. But the silvery metal—abundant, cheap, lightweight, and corrosion resistant—has a dark side: red mud. This brownish red slurry, a caustic mishmash of metal-and silicon-rich oxides, often with a dash of radioactive and rare earth elements, is what’s left after aluminum is extracted from ore. And it is piling up. Globally, some 3 billion tons of red mud are now stored in massive waste ponds or dried mounds, making it one of the most abundant industrial wastes on the planet. Aluminum plants generate an additional 150 million tons each year.

Red mud has become trouble looking for a place to happen. In 2010, an earthen dam at one waste pond in Hungary gave way, unleashing a 2-meter-high wall of red mud that buried the town of Ajka, killing 10 people and giving 150 severe chemical burns. (See more on the dangers posed by waste dams.) Even when red mud remains contained, its extreme alkalinity can leach out, poison groundwater, and contaminate nearby rivers and ecosystems. Such liabilities, as well as growing regulatory pressure on industry to develop sustainable practices, have catalyzed global efforts to find ways to recycle and reuse red mud. Some researchers are developing ways to extract the valuable rare earth metals, whereas others turn the mud into cement or bricks.

“There is hope here,” says Yiannis Pontikes, a mechanical engineer at KU Leuven. But economic and marketing hurdles remain, and “the clock is ticking” as regulators consider new controls, says Efthymios Balomenos, a metallurgical engineer at the National Technical University of Athens. “At some point we will not be able to produce waste. So, there is an urgent need to make changes.”

Rob Barnett, a senior clean energy analyst for Bloomberg, forecasts a 30% increase in global PV deployment this year, and double-digit growth through 2025.


Demand is pushing solar growth across the world to new heights, as Bloomberg senior analyst Rob Barnett forecasts deployment to increase by 30% this year. Total global solar deployment is closing in on 1 TW installed – an impressive milestone for the energy transition.

“The global solar picture is just staggering at this point,” Barnett told Yahoo Finance. “We are on track to install something like 250 GW of solar capacity this year.”

China is contributing the largest share to capacity growth this year, with about 108 GW of new operational PV. This is a near-doubling of the roughly 55 GW installed by China last year. The country has the world’s largest exposure to renewable energy, with 323 GW of solar and 338 GW of wind energy. President Xi Jinping aims for 1,200 GW combined by 2030, and the nation is currently ahead of schedule on that goal, said Bloomberg.

Elon Musk, often known to break the Internet by his statements or acts recently tweeted what seemed like a futuristic invention. Being one of the wealthiest people on the planet was not enough for the CEO of Tesla as he thought two of his brains would be better. One would always wonder how a brain can be transferred into a man-made machine, but with his recent tweet, Elon Musk confirmed he copied his brain to the machine and talks to his digital version.

Read More, ‘I haven’t had sex in ages’: Elon Musk Defends Himself Against Affair Allegations With Google’s Sergey Brin’s Wife, Fans Say He’s a Snake For Forgetting Brin’s Loan To Build Tesla

A recent tweet by Shibetoshi Nakamoto, known as the creator of Dogecoin with an account named, @BillyM2k asked, “If you could upload your brain to the cloud, and talk to a virtual version of yourself, would you be buddies?”. In the second continuation of the tweet, the user posted, “would be cool to have a competitive game buddy of approximately the same skill level. Except he would be a computer and have infinite time so I would more just see him get better at everything while I am busy with dumb life things.

‘May the forest be with you.’The GEDI system aboard the ISS shoots laser beams down at Earth to fight deforestation.


The Food and Agricultural Organization (FAO) of the United Nations is building new digital tools to help fight deforestation and climate change. One of these is the FAO’s Framework for Ecosystem Monitoring (FERM) website, which uses satellite images to highlight the negative impact on forests worldwide.

The technology certainly lives up to its sci-fi namesake. The GEDI system is perched aboard the International Space Station (ISS), and it shoots laser beams at trees from the orbital laboratory.

Under the state budget passed last week, Pennsylvania’s conservation programs will receive a one-time, pandemic-related federal booster shot of $765 million for state parks, forests, streams, open space, farms, and home energy efficiency — an amount one environmental advocate called “generational.”

The funding means three new state parks, one possibly in the Philadelphia region, as well as a new ATV park, though locations haven’t been announced. The money, which is in addition to regular yearly budget funding, comes from the American Rescue Plan Act (ARPA), a $1.9 trillion federal economic stimulus bill signed by President Joe Biden last year as part of COVID-19 relief.

The ARPA funds, combined with an additional $56 million from the state’s Oil and Gas Lease Fund, and a $12 billion state surplus, mean that agencies routinely faced with declining or stagnant spending plans are suddenly getting a big lift.