Jun 17, 2020
How Elon Musk aims to revolutionise battery technology
Posted by Kelvin Dafiaghor in categories: Elon Musk, sustainability
Incredible Elon Musk
Could the least exciting bit of Elon Musk’s empire end up being the most transformative?
Incredible Elon Musk
Could the least exciting bit of Elon Musk’s empire end up being the most transformative?
SpaceX could use the electric skateboard of the Cybertruck to build all the of vehicles that they need for a lunar mining operation. About twenty-five to thirty cybertrucks could be delivered to the moon with every SpaceX Starship.
A lunar base and mining operation would lower the cost for lunar operations by 70 times and by ten times for high earth orbit. A lunar mining operation would also lower the cost of operations to Mars and the SpaceX plans for a city on Mars. Before, Elon Musk makes a city on Mars using a dozen fleets of one hundred Starships he will build a mining town on the moon.
Hypebeast has rendered a Tesla Cybertruck as a six-wheel lunar rover.
This mouth-full of a boat uses simple physics to create a cushion of air that allows it to effortlessly fly along the tops of ocean waves with near inexhaustible solar energy. The researchers say that this sleek, solar vessel could act as a mobile charging station for drones in the deep ocean or could conduct oceanic search and rescue missions.
Researchers in Russia have designed a solar-powered, and AI piloted, boat that can walk on water and serve as a mid-ocean fuel-up station for drones.
It’s no surprise that Tesla’s next-gen Roadster is going to be lightning-quick, with a claimed 0–60 mph time of 1.9 seconds for the base model. However, the addition of SpaceX cold-gas thrusters that will be hidden behind the car’s license plate could drop Roadster’s 0–60 mph time to a dizzying 1.1 seconds.
YouTube channel Engineering Explained used some of Isaac Newton’s basic physics principles to determine that the Roadster could become one of the quickest cars in the world. By plugging in existing information that CEO Elon Musk has revealed about Tesla’s next-gen Roadster, host Jason Fenske determined that the vehicle will weigh roughly 2000 kg (4,400 lbs), which backs into acceleration g-forces of approximately 1.44 G’s.
Please listen to the second episode of my new Cosmic Controversy Podcast. This week’s guest is planetary scientist Stephen Kane at the University of California, Riverside, who discusses why Venus is so haunting and beguiling all at once.
In this wide-ranging interview, planetary scientist Stephen Kane of the University of California, Riverside, delves into the mysteries of our neighbor planet Venus. We discuss how Venus went wrong and why understanding its evolution is so important in characterizing extrasolar planetary systems like our own.
The SolarStratos will gain its power from 240 square feet of solar panels on its wings.
Despite pigheaded intransigence at the highest levels of its national government, the renewable energy revolution is coming to Australia in a big way. And why not? Enough sunlight hits what Bill Bryson calls “a sunburned country” every day to meet all of humanity’s energy needs for a year. All it has to do is figure out how to harvest and distribute all that energy. (It could begin by replacing its national leaders with people who possess actual functioning brains, but the same can be said for many nations around the world.)
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide, a greenhouse gas, to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique to selectively produce methane, carbon monoxide or formic acid from carbon dioxide and water.
The study has been published in ACS Nano (“Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion”).
Plants convert carbon dioxide and water to oxygen and high-energy sugars, which they use as “fuel” to grow. They obtain their energy from sunlight. Jianwu Sun and his colleagues at Linköping University are attempting to imitate this reaction, known as photosynthesis, used by plants to capture carbon dioxide from air and convert it to chemical fuels, such as methane, ethanol and methanol. The method is currently at a research stage, and the long-term objective of the scientists is to convert solar energy to fuel efficiently.
Flat solar panels still face big limitations when it comes to making the most of the available sunlight each day. A new spherical solar cell design aims to boost solar power harvesting potential from nearly every angle without requiring expensive moving parts to keep tracking the sun’s apparent movement across the sky.
The spherical solar cell prototype designed by Saudi researchers is a tiny blue sphere that a person can easily hold in one hand like a ping pong ball. Indoor experiments with a solar simulator lamp have already shown that it can achieve between 15 percent and 100 percent more power output compared with a flat solar cell with the same total surface area, depending on the background materials reflecting sunlight into the solar cells. The research group hopes its nature-inspired design can fare similarly well in future field tests in many different locations around the world.
“The placement and shape of the housefly’s eyes increase their angular field of view so they can see roughly 270 degrees around them in the horizontal field,” says Nazek El-Atab, a postdoctoral researcher in microsystems engineering at the King Abdullah University of Science and Technology (KAUST). “Similarly, the spherical architecture increases the ‘angular field of view’ of the solar cell, which means it can harvest sunlight from more directions.”
A new report finds that a shift to 90-percent clean power could save as many as 85,000 lives by 2050 by sparing Americans from toxic pollution.