Menu

Blog

Archive for the ‘sustainability’ category: Page 69

Mar 9, 2024

Tesla’s price cuts are driving down car values so much that EV makers are sending checks to leasing firms to compensate them

Posted by in categories: sustainability, transportation

Ayvens, the biggest multi-brand leasing firm, already has received checks in recent weeks to make up for slumping prices, according to Chief Executive Officer Tim Albertsen. Leasing companies are demanding concessions from EV makers, including agreements that manufacturers will buy back vehicles, to protect against further erosion in the $1.2 trillion second-hand car market.

Prices for used EVs plummeted last year as weakening demand for new battery-powered cars prompted Tesla to slash sticker prices, forcing others to follow suit. The moves are reverberating through leasing firms, such as Europe-focused Societe Generale SA’s Ayvens and BNP Paribas SA’s Arval, which serve as middlemen in the corporate car market that accounts for roughly 60% of sales in the region.

“Manufacturers today need to keep selling EVs,” Albertsen said during the company’s earnings call this month. “We then need some kind of protection from the manufacturers in terms of their future pricing.”

Mar 9, 2024

Novel Material Increases Efficiency and Stability of Perovskite Solar cells

Posted by in categories: chemistry, solar power, sustainability

In an article published in the Journal of Materials Chemistry C, Brazilian researchers describe a strategy to enhance the efficiency and stability of solar cells made of perovskite, a semiconductor material produced in the laboratory. The results of the project could be highly positive for the future of the solar power sector.

Developed by researchers at São Paulo State University (UNESP) in Bauru, Brazil, the method involves the use of a class of materials known as MXenes, a family of two-dimensional materials with a graphene-like structure combining transition metals, carbon and/or nitrogen, and surface functional groups such as fluoride, oxygen or hydroxyl. Their properties include high electrical conductivity, good thermal stability, and high transmittance (relating to the amount of light that passes through a substance without being reflected or absorbed).

In the study, the MXene Ti3C2Tx was added to polymethyl methacrylate (PMMA) to form a passivation coating, which was spin-coated on top of the perovskite layer of inverted solar cells. Passivation coatings are designed to mitigate possible defects in polycrystalline solids (perovskite in this case) due to interaction with the environment or to their internal structure.

Mar 9, 2024

Sustainable Chemistry Achieved: Scientists Develop Organic Framework Material That Mimics Photosynthesis

Posted by in categories: chemistry, energy, sustainability

Scientists at the National University of Singapore (NUS) have created a microporous covalent organic framework with dense donor–acceptor lattices and engineered linkages for the efficient and clean production of hydrogen peroxide (H2O2) through the photosynthesis process with water and air.

Traditional industrial production of H2O2 via the anthraquinone process using hydrogen and oxygen, is highly energy-intensive. This approach employs toxic solvents and expensive noble-metal catalysts, and generates substantial waste from side reactions.

Mar 8, 2024

MIT’s new plant-based material could replace plastics

Posted by in categories: materials, sustainability

Using cellulose from trees and a synthetic polymer, MIT researchers have created a material that “is stronger and tougher than some types of bone, and harder than typical aluminum alloys,” the university announced.

The researchers hope their compound could lead to better, more sustainable plastics in the future. Currently, the material shrinks while drying, making printing anything large out of it difficult.

“If you could avoid shrinkage, you could keep scaling up, maybe to the meter scale,” said MIT’s Abhinav Rao. “Then, if we were to dream big, we could replace a significant fraction of plastics with cellulose composites.”

Mar 8, 2024

Aluminum nanoparticles make tunable green catalysts

Posted by in categories: chemistry, nanotechnology, particle physics, sustainability

Catalysts unlock pathways for chemical reactions to unfold at faster and more efficient rates, and the development of new catalytic technologies is a critical part of the green energy transition.

The Rice University lab of nanotechnology pioneer Naomi Halas has uncovered a transformative approach to harnessing the catalytic power of aluminum nanoparticles by annealing them in various gas atmospheres at high temperatures.

According to a study published in the Proceedings of the National Academy of Sciences, Rice researchers and collaborators showed that changing the structure of the oxide layer that coats the particles modifies their , making them a versatile tool that can be tailored to suit the needs of different contexts of use from the production of sustainable fuels to water-based reactions.

Mar 6, 2024

How Jennifer Garner’s Once Upon a Farm became a $100 million business

Posted by in categories: business, food, sustainability

The actress’s baby food brand is expanding into new categories and eyeing an IPO.

Mar 3, 2024

Chameleons inspire new Multicolor 3D-Printing Technology

Posted by in categories: 3D printing, chemistry, engineering, sustainability

Inspired by the color-changing ability of chameleons, researchers have developed a sustainable technique to 3D-print multiple, dynamic colors from a single ink.

“By designing new chemistries and printing processes, we can modulate structural color on the fly to produce color gradients not possible before,” said Ying Diao, an associate professor of chemistry and chemical and biomolecular engineering at the University of Illinois Urbana-Champaign and a researcher at the Beckman Institute for Advanced Science and Technology.

The study appears in the journal PNAS.

Mar 2, 2024

Faster charging with diamond nanomembranes

Posted by in categories: sustainability, transportation

Diamond is known for its outstanding thermal conductivity. This makes the material ideal for cooling electronic components with high power densities, such as those used in processors, semiconductor lasers or electric vehicles. Researchers at Fraunhofer USA, an independent international affiliate of the Fraunhofer-Gesellschaft, have succeeded in developing wafer-thin nanomembranes from synthetic diamonds that can be integrated into electronic components, thereby reducing the local heat load by up to ten times. This helps to improve the road performance and service life of electric cars and significantly reduces battery charging time.

An increase in power density and the resulting higher heat dissipation in electronic components require new materials. Diamond is known for its high thermal conductivity, which is four to five times higher than that of copper. For this reason, it is a particularly interesting material when it comes to cooling power electronics in electric transportation, photovoltaics or storage systems.

Until now, heat sinks made of copper or aluminum plates have increased the heat-emitting surface of components that produce heat, thus preventing damage due to overheating.

Mar 2, 2024

Crystalline Quest: The International Pursuit of Lunar Ice Deposits

Posted by in categories: space travel, sustainability

Chandrayaan-3’s landing on the Moon and subsequent sulfur detection has propelled lunar ice research forward, aiding NASA ’s plans for a sustainable lunar station. These developments highlight the growing collaboration in space exploration.

Building a space station on the Moon might seem like something out of a science fiction movie, but each new lunar mission is bringing that idea closer to reality. Scientists are homing in on potential lunar ice reservoirs in permanently shadowed regions, or PSRs. These are key to setting up any sort of sustainable lunar infrastructure.

In late August 2023, India’s Chandrayaan-3 lander touched down on the lunar surface in the south polar region, which scientists suspect may harbor ice. This landing marked a significant milestone not only for India but for the scientific community at large.

Mar 2, 2024

The Future of Energy — Scientists Unveil Roadmap for Bringing Perovskite/Silicon Tandem Solar Cells to Market

Posted by in categories: solar power, sustainability

Researchers at King Abdullah University of Science and Technology (KAUST) have developed a comprehensive plan to introduce perovskite/silicon tandem solar cells into the marketplace, setting the stage for a world energized by widespread, cost-effective renewable energy, both in Saudi Arabia and globally.

The authors of the article, published in esteemed journal Science, include Prof. Stefaan De Wolf and his research team at the KAUST Solar Center. The team is working on improving solar efficiency to meet Saudi Arabia’ solar targets.

Perovskite/silicon tandem technology combines the strengths of two materials – perovskite’s efficient light absorption and silicon’s long-term stability – to achieve record-breaking efficiency. In 2023, the De Wolf laboratory reported two world records for power conversion efficiency, with five achieved globally in the same year, showing rapid progress in perovskite/silicon tandem technology.

Page 69 of 642First6667686970717273Last